Logo video2dn
  • Сохранить видео с ютуба
  • Категории
    • Музыка
    • Кино и Анимация
    • Автомобили
    • Животные
    • Спорт
    • Путешествия
    • Игры
    • Люди и Блоги
    • Юмор
    • Развлечения
    • Новости и Политика
    • Howto и Стиль
    • Diy своими руками
    • Образование
    • Наука и Технологии
    • Некоммерческие Организации
  • О сайте

Скачать или смотреть Dhrubo Saha – Advancing Multi-Modal Search Capabilities in Search Pipeline

  • Plain Schwarz
  • 2025-06-17
  • 242
Dhrubo Saha – Advancing Multi-Modal Search Capabilities in Search Pipeline
  • ok logo

Скачать Dhrubo Saha – Advancing Multi-Modal Search Capabilities in Search Pipeline бесплатно в качестве 4к (2к / 1080p)

У нас вы можете скачать бесплатно Dhrubo Saha – Advancing Multi-Modal Search Capabilities in Search Pipeline или посмотреть видео с ютуба в максимальном доступном качестве.

Для скачивания выберите вариант из формы ниже:

  • Информация по загрузке:

Cкачать музыку Dhrubo Saha – Advancing Multi-Modal Search Capabilities in Search Pipeline бесплатно в формате MP3:

Если иконки загрузки не отобразились, ПОЖАЛУЙСТА, НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если у вас возникли трудности с загрузкой, пожалуйста, свяжитесь с нами по контактам, указанным в нижней части страницы.
Спасибо за использование сервиса video2dn.com

Описание к видео Dhrubo Saha – Advancing Multi-Modal Search Capabilities in Search Pipeline

More: https://2025.berlinbuzzwords.de/sessi...

Speaker: Dhrubo Saha

Exploring the integration of machine learning inference processors in OpenSearch pipelines, focusing on multi-modal search capabilities, we demonstrate how these processors enhance ingest, search request, and response processes for text, image, and audio data, significantly improving search and analytical capabilities in multi-modalities worlds.

The integration of machine learning (ML) inference processors within search pipeline architecture represents a significant advancement in search and analytics technology in OpenSearch. This presentation delves into the implementation and impact of these processors across three critical stages: ingest, search request, and search response.

We begin by examining the ML inference ingest processor, which allows for real-time enrichment of data as it enters the system. This processor can generate embeddings, classify content, or extract features from various data types, including text, images, and audio. We'll demonstrate how this enhances data quality and searchability from the point of ingestion.

Next, we explore the ML inference search request processor, which dynamically modifies search queries based on ML model outputs. This powerful feature enables context-aware query expansion, semantic understanding, and even cross-modal query translation. For instance, we'll show how a text query can be used to search for relevant images or how an audio input can be transformed into a text-based search.

The ML inference search response processor is then discussed, highlighting its ability to rerank, filter, or augment search results using ML models. This can significantly improve result relevance, especially in multi-modal scenarios where traditional ranking algorithms may fall short.

Throughout the presentation, we'll showcase practical examples of these processors in action, demonstrating their application in various use cases such as:

Visual similarity search in e-commerce catalogs
Audio transcription and searchability in media archives
Cross-lingual document retrieval in multilingual databases
Sentiment-based filtering in social media analytics

We'll also address the technical considerations of implementing these processors, including model selection, performance optimization, and scalability concerns. The presentation will touch upon the flexibility of using both locally hosted and externally connected ML models, allowing organizations to leverage AI capabilities within their search infrastructure.

Finally, we'll discuss the future potential of this technology, including the possibility of more advanced multi-modal interactions, real-time learning models, and the integration of large language models for even more sophisticated search and analytics capabilities.

This presentation aims to provide attendees with a comprehensive understanding of how ML inference processors can revolutionize multi-modal search in OpenSearch, offering insights into both the current state of the technology and its future directions.

###

Follow us on Social Media and join the Community!

Mastodon: https://floss.social/@BerlinBuzzwords
LinkedIn:   / berlin-buzzwords  
Website: https://berlinbuzzwords.de
Mail: [email protected]

Berlin Buzzwords is an event by Plain Schwarz – https://plainschwarz.com

• Code: PVOCJJYPJAOBRUIE

Комментарии

Информация по комментариям в разработке

Похожие видео

  • О нас
  • Контакты
  • Отказ от ответственности - Disclaimer
  • Условия использования сайта - TOS
  • Политика конфиденциальности

video2dn Copyright © 2023 - 2025

Контакты для правообладателей [email protected]