Logo video2dn
  • Сохранить видео с ютуба
  • Категории
    • Музыка
    • Кино и Анимация
    • Автомобили
    • Животные
    • Спорт
    • Путешествия
    • Игры
    • Люди и Блоги
    • Юмор
    • Развлечения
    • Новости и Политика
    • Howto и Стиль
    • Diy своими руками
    • Образование
    • Наука и Технологии
    • Некоммерческие Организации
  • О сайте

Скачать или смотреть Transforming DataFrames in Scala Spark: Join and Translate Reviews Easily

  • vlogize
  • 2025-05-28
  • 0
Transforming DataFrames in Scala Spark: Join and Translate Reviews Easily
Use different dataframes to create new one with information (Scala Spark)scalaapache sparkapache spark sql
  • ok logo

Скачать Transforming DataFrames in Scala Spark: Join and Translate Reviews Easily бесплатно в качестве 4к (2к / 1080p)

У нас вы можете скачать бесплатно Transforming DataFrames in Scala Spark: Join and Translate Reviews Easily или посмотреть видео с ютуба в максимальном доступном качестве.

Для скачивания выберите вариант из формы ниже:

  • Информация по загрузке:

Cкачать музыку Transforming DataFrames in Scala Spark: Join and Translate Reviews Easily бесплатно в формате MP3:

Если иконки загрузки не отобразились, ПОЖАЛУЙСТА, НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если у вас возникли трудности с загрузкой, пожалуйста, свяжитесь с нами по контактам, указанным в нижней части страницы.
Спасибо за использование сервиса video2dn.com

Описание к видео Transforming DataFrames in Scala Spark: Join and Translate Reviews Easily

Learn how to consolidate game reviews using Scala Spark DataFrames through effective joins and transformations. Master the art of combining dataframes with `practical` examples!
---
This video is based on the question https://stackoverflow.com/q/66491459/ asked by the user 'MLstudent' ( https://stackoverflow.com/u/12117746/ ) and on the answer https://stackoverflow.com/a/66491616/ provided by the user 'mck' ( https://stackoverflow.com/u/14165730/ ) at 'Stack Overflow' website. Thanks to these great users and Stackexchange community for their contributions.

Visit these links for original content and any more details, such as alternate solutions, latest updates/developments on topic, comments, revision history etc. For example, the original title of the Question was: Use different dataframes to create new one with information (Scala Spark)

Also, Content (except music) licensed under CC BY-SA https://meta.stackexchange.com/help/l...
The original Question post is licensed under the 'CC BY-SA 4.0' ( https://creativecommons.org/licenses/... ) license, and the original Answer post is licensed under the 'CC BY-SA 4.0' ( https://creativecommons.org/licenses/... ) license.

If anything seems off to you, please feel free to write me at vlogize [AT] gmail [DOT] com.
---
Transforming DataFrames in Scala Spark: Join and Translate Reviews Easily

Collecting and analyzing data from multiple sources is one of the core responsibilities of data professionals. In this guide, we will dive into a common problem faced when dealing with multiple DataFrames in Scala Spark. If you're wondering how to merge game rating reviews from different sources, you’re in the right place. Let’s tackle the problem step by step.

Understanding the Problem

You have a primary DataFrame, Df_reviews, which lists various games and their corresponding ratings from different reviews. Additionally, you have separate DataFrames (Df_rev1, Df_rev2, and Df_rev3) that contain translations of these ratings into numerical scores. Your goal is to create a new DataFrame that not only translates these reviews into numerical form but also identifies the second highest rating for each game.

Sample DataFrames

Here's a look at what the DataFrames contain:

DataFrame 1: Reviews

[[See Video to Reveal this Text or Code Snippet]]

DataFrame 2: Review Translation 1

[[See Video to Reveal this Text or Code Snippet]]

DataFrame 3: Review Translation 2

[[See Video to Reveal this Text or Code Snippet]]

DataFrame 4: Review Translation 3

[[See Video to Reveal this Text or Code Snippet]]

Desired Output

You want to create a new DataFrame (Df_output) that combines this information into a single view, like so:

[[See Video to Reveal this Text or Code Snippet]]

Solution Overview

To achieve this, we will need to perform a series of left joins on the original DataFrame with each of the translation DataFrames. This will help us fill in the numerical values for each review. Finally, we'll select the necessary columns and calculate the second highest value utilizing UDFs (User Defined Functions) and array sorting.

Step-by-Step Guide

1. Joining DataFrames

We first create joins between Df_reviews and the other DataFrames to obtain the equivalent numerical ratings.

[[See Video to Reveal this Text or Code Snippet]]

2. Adding the Second Best Rating

Next, we define a UDF that will help us sort and extract the second highest rating from the joined DataFrame.

[[See Video to Reveal this Text or Code Snippet]]

This will give you the final DataFrame with all transformed ratings and the second best rating included.

3. Joining Multiple Columns

For translating columns in a similar manner but with multiple translations, you can do multiple joins:

[[See Video to Reveal this Text or Code Snippet]]

Conclusion

By understanding the structure of your DataFrames and leveraging joins effectively, you can manipulate and analyze data efficiently using Scala Spark. This guide covered essential techniques to merge and translate data in Scala Spark, ensuring you can derive the insights you need without losing track of your data's integrity.

Now you’re ready to tackle similar challenges in your data processing activities. Happy coding!

Комментарии

Информация по комментариям в разработке

Похожие видео

  • О нас
  • Контакты
  • Отказ от ответственности - Disclaimer
  • Условия использования сайта - TOS
  • Политика конфиденциальности

video2dn Copyright © 2023 - 2025

Контакты для правообладателей [email protected]