Logo video2dn
  • Сохранить видео с ютуба
  • Категории
    • Музыка
    • Кино и Анимация
    • Автомобили
    • Животные
    • Спорт
    • Путешествия
    • Игры
    • Люди и Блоги
    • Юмор
    • Развлечения
    • Новости и Политика
    • Howto и Стиль
    • Diy своими руками
    • Образование
    • Наука и Технологии
    • Некоммерческие Организации
  • О сайте

Скачать или смотреть Efficiently Slice A Multi-Dimensional Array with Indices using PyTorch or Numpy

  • vlogize
  • 2025-02-24
  • 0
Efficiently Slice A Multi-Dimensional Array with Indices using PyTorch or Numpy
Slice array along axis with list of different indicesnumpynumpy slicingpythontorch
  • ok logo

Скачать Efficiently Slice A Multi-Dimensional Array with Indices using PyTorch or Numpy бесплатно в качестве 4к (2к / 1080p)

У нас вы можете скачать бесплатно Efficiently Slice A Multi-Dimensional Array with Indices using PyTorch or Numpy или посмотреть видео с ютуба в максимальном доступном качестве.

Для скачивания выберите вариант из формы ниже:

  • Информация по загрузке:

Cкачать музыку Efficiently Slice A Multi-Dimensional Array with Indices using PyTorch or Numpy бесплатно в формате MP3:

Если иконки загрузки не отобразились, ПОЖАЛУЙСТА, НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если у вас возникли трудности с загрузкой, пожалуйста, свяжитесь с нами по контактам, указанным в нижней части страницы.
Спасибо за использование сервиса video2dn.com

Описание к видео Efficiently Slice A Multi-Dimensional Array with Indices using PyTorch or Numpy

Learn how to slice a multi-dimensional array efficiently in Python using PyTorch or Numpy without relying on complex list comprehensions.
---
This video is based on the question https://stackoverflow.com/q/77705565/ asked by the user 'mhenning' ( https://stackoverflow.com/u/15019223/ ) and on the answer https://stackoverflow.com/a/77705614/ provided by the user 'cottontail' ( https://stackoverflow.com/u/19123103/ ) at 'Stack Overflow' website. Thanks to these great users and Stackexchange community for their contributions.

Visit these links for original content and any more details, such as alternate solutions, comments, revision history etc. For example, the original title of the Question was: Slice array along axis with list of different indices

Also, Content (except music) licensed under CC BY-SA https://meta.stackexchange.com/help/l...
The original Question post is licensed under the 'CC BY-SA 4.0' ( https://creativecommons.org/licenses/... ) license, and the original Answer post is licensed under the 'CC BY-SA 4.0' ( https://creativecommons.org/licenses/... ) license.

If anything seems off to you, please feel free to write me at vlogize [AT] gmail [DOT] com.
---
Efficiently Slice A Multi-Dimensional Array with Indices using PyTorch or Numpy

When working with multi-dimensional arrays or tensors in Python, especially for tasks like machine learning and data analysis, slicing them effectively can often be a challenge. This particular issue arises when you want to extract specific slices from a 3D tensor based on a list of indices.

In this guide, we will explore how to slice a 3D tensor with a list of indices efficiently using either PyTorch or Numpy. Let’s dive into the problem and its solution.

The Problem

Imagine you have a 3-dimensional tensor of shape (a, b, c) (for example, tensor), and you also have a list B of length a containing indices that you want to use to slice the tensor. The goal is to create a new array of size (a, c) that contains the corresponding slices from the original tensor.

Here's an example of a tensor and a list of indices:

Example Tensor and Indices

Let's say we have the following 3D tensor:

[[See Video to Reveal this Text or Code Snippet]]

And our list of indices:

[[See Video to Reveal this Text or Code Snippet]]

The desired output after slicing should look like:

[[See Video to Reveal this Text or Code Snippet]]

The Solution

Instead of using cumbersome list comprehensions for this slicing operation, we can leverage advanced indexing in both PyTorch and Numpy, which allows for a more concise and efficient approach.

Using PyTorch

With PyTorch, you can apply the following line of code:

[[See Video to Reveal this Text or Code Snippet]]

Using Numpy

Similarly, if you're using Numpy, you can achieve the same result with:

[[See Video to Reveal this Text or Code Snippet]]

Output Confirmation

Both approaches will yield the same output:

[[See Video to Reveal this Text or Code Snippet]]

Conclusion

In summary, when you need to slice through a multi-dimensional array based on a list of indices, both PyTorch and Numpy provide efficient solutions that eliminate the need for list comprehensions. By using advanced indexing, your code becomes not only cleaner but also significantly faster, which is especially important in high-performance applications like neural networks.

By using torch.arange() or np.arange(), you can easily generate the required index ranges and slice your tensor, making your work in data science and machine learning much more manageable.

Feel free to try this solution in your projects and see how it enhances your coding efficiency!

Комментарии

Информация по комментариям в разработке

Похожие видео

  • О нас
  • Контакты
  • Отказ от ответственности - Disclaimer
  • Условия использования сайта - TOS
  • Политика конфиденциальности

video2dn Copyright © 2023 - 2025

Контакты для правообладателей [email protected]