Logo video2dn
  • Сохранить видео с ютуба
  • Категории
    • Музыка
    • Кино и Анимация
    • Автомобили
    • Животные
    • Спорт
    • Путешествия
    • Игры
    • Люди и Блоги
    • Юмор
    • Развлечения
    • Новости и Политика
    • Howto и Стиль
    • Diy своими руками
    • Образование
    • Наука и Технологии
    • Некоммерческие Организации
  • О сайте

Скачать или смотреть Task-Circuit Quantization: Leveraging Knowledge Localization and Interpretability for Compression

  • Xiaol.x
  • 2025-04-13
  • 81
Task-Circuit Quantization: Leveraging Knowledge Localization and Interpretability for Compression
  • ok logo

Скачать Task-Circuit Quantization: Leveraging Knowledge Localization and Interpretability for Compression бесплатно в качестве 4к (2к / 1080p)

У нас вы можете скачать бесплатно Task-Circuit Quantization: Leveraging Knowledge Localization and Interpretability for Compression или посмотреть видео с ютуба в максимальном доступном качестве.

Для скачивания выберите вариант из формы ниже:

  • Информация по загрузке:

Cкачать музыку Task-Circuit Quantization: Leveraging Knowledge Localization and Interpretability for Compression бесплатно в формате MP3:

Если иконки загрузки не отобразились, ПОЖАЛУЙСТА, НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если у вас возникли трудности с загрузкой, пожалуйста, свяжитесь с нами по контактам, указанным в нижней части страницы.
Спасибо за использование сервиса video2dn.com

Описание к видео Task-Circuit Quantization: Leveraging Knowledge Localization and Interpretability for Compression

Task-Circuit Quantization: Leveraging Knowledge Localization and Interpretability for Compression

Hanqi Xiao, Yi-Lin Sung, Elias Stengel-Eskin, Mohit Bansal

Post-training quantization (PTQ) reduces a model's memory footprint by mapping full precision weights into low bit weights without costly retraining, but can degrade its downstream performance especially in low 2- to 3-bit settings. We develop a new mixed-precision PTQ approach, Task-Circuit Quantization (TaCQ), that draws parallels to automated circuit discovery, directly conditioning the quantization process on specific weight circuits -- which we define as sets of weights associated with downstream task performance. These weights are kept as 16-bit weights, while others are quantized, maintaining performance while only adding a marginal memory cost. Specifically, TaCQ contrasts unquantized model weights with a uniformly-quantized model to estimate the expected change in weights due to quantization and uses gradient information to predict the resulting impact on task performance, allowing us to preserve task-specific weights. We compare TaCQ-based quantization to existing mixed-precision quantization methods when conditioning both on general-purpose and task-specific data. Across QA, math reasoning, and text-to-SQL tasks for both Llama-3 and Qwen2.5, we find that TaCQ outperforms baselines using the same calibration data and a lower weight budget, achieving major improvements in the 2 and 3-bit regime. With only 3.1 bits we are able to recover 96% of Llama-3-8B-Instruct's unquantized 16-bit MMLU performance, obtaining a 5.25% absolute improvement over SPQR. We also observe consistently large gains over existing methods in the 2-bit regime, with an average gain of 14.74% over the strongest baseline, SliM-LLM. Moreover, we observe a 7.20% gain without conditioning on specific tasks, showing TaCQ's ability to identify important weights is not limited to task-conditioned settings.

https://arxiv.org/abs/2504.07389

Комментарии

Информация по комментариям в разработке

Похожие видео

  • О нас
  • Контакты
  • Отказ от ответственности - Disclaimer
  • Условия использования сайта - TOS
  • Политика конфиденциальности

video2dn Copyright © 2023 - 2025

Контакты для правообладателей [email protected]