Logo video2dn
  • Сохранить видео с ютуба
  • Категории
    • Музыка
    • Кино и Анимация
    • Автомобили
    • Животные
    • Спорт
    • Путешествия
    • Игры
    • Люди и Блоги
    • Юмор
    • Развлечения
    • Новости и Политика
    • Howto и Стиль
    • Diy своими руками
    • Образование
    • Наука и Технологии
    • Некоммерческие Организации
  • О сайте

Скачать или смотреть Isabelle Mohr, Saba Sturua – Visual Literacy: Complex Document Retrieval with VLMs

  • Plain Schwarz
  • 2025-06-17
  • 111
Isabelle Mohr, Saba Sturua – Visual Literacy: Complex Document Retrieval with VLMs
  • ok logo

Скачать Isabelle Mohr, Saba Sturua – Visual Literacy: Complex Document Retrieval with VLMs бесплатно в качестве 4к (2к / 1080p)

У нас вы можете скачать бесплатно Isabelle Mohr, Saba Sturua – Visual Literacy: Complex Document Retrieval with VLMs или посмотреть видео с ютуба в максимальном доступном качестве.

Для скачивания выберите вариант из формы ниже:

  • Информация по загрузке:

Cкачать музыку Isabelle Mohr, Saba Sturua – Visual Literacy: Complex Document Retrieval with VLMs бесплатно в формате MP3:

Если иконки загрузки не отобразились, ПОЖАЛУЙСТА, НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если у вас возникли трудности с загрузкой, пожалуйста, свяжитесь с нами по контактам, указанным в нижней части страницы.
Спасибо за использование сервиса video2dn.com

Описание к видео Isabelle Mohr, Saba Sturua – Visual Literacy: Complex Document Retrieval with VLMs

More: https://2025.berlinbuzzwords.de/sessi...

Speaker: Isabelle Mohr, Saba Sturua

Traditional document retrieval systems struggle with visually rich documents as they discard visual elements during text extraction. This talk shows how vision language models (VLMs) can address these limitations and presents a new benchmark for evaluating document retrieval systems across languages, domains, and document types.

The field of document retrieval has traditionally relied on text-based approaches, which have served well for simple text documents but show significant limitations when dealing with visually complex documents. Many real-world documents contain crucial information embedded in diagrams, charts, plots, tables, and intricate layouts that conventional systems fail to properly process. Thus, if we query these systems with information that is only included in visual elements (for example, "How much did the average temperature in Germany increase from 1990 to 2025?"), they will fail to retrieve relevant documents even if they contain plots or charts with the exact answer.

Vision Language Models (VLMs) offer a new way to approach document retrieval. By processing both text and visual elements together, these models can better understand documents as a whole, seeing how text works together with graphics and layout. This is especially useful for technical documents, research papers, financial reports, and educational materials where images and diagrams are key to understanding the content.

In this talk, we will explore how VLMs can be effectively applied to document retrieval tasks. We'll explain how to fine-tune these models for handling complex documents, including important considerations for data preparation, model architecture choices, and training strategies. We'll also present a new benchmark for testing document retrieval systems across different languages, domains, and document types. This benchmark provides a framework for comparing traditional and VLM-based retrieval systems, enabling practitioners to make informed decisions for their specific use cases.

###

Follow us on Social Media and join the Community!

Mastodon: https://floss.social/@BerlinBuzzwords
LinkedIn:   / berlin-buzzwords  
Website: https://berlinbuzzwords.de
Mail: [email protected]

Berlin Buzzwords is an event by Plain Schwarz – https://plainschwarz.com

Комментарии

Информация по комментариям в разработке

Похожие видео

  • О нас
  • Контакты
  • Отказ от ответственности - Disclaimer
  • Условия использования сайта - TOS
  • Политика конфиденциальности

video2dn Copyright © 2023 - 2025

Контакты для правообладателей [email protected]