Logo video2dn
  • Сохранить видео с ютуба
  • Категории
    • Музыка
    • Кино и Анимация
    • Автомобили
    • Животные
    • Спорт
    • Путешествия
    • Игры
    • Люди и Блоги
    • Юмор
    • Развлечения
    • Новости и Политика
    • Howto и Стиль
    • Diy своими руками
    • Образование
    • Наука и Технологии
    • Некоммерческие Организации
  • О сайте

Скачать или смотреть How to Combine Multiple Columns into One Category Column in Pandas

  • vlogize
  • 2025-04-03
  • 3
How to Combine Multiple Columns into One Category Column in Pandas
Combine multiple columns into one category column using the column names as value labelpythonpandas
  • ok logo

Скачать How to Combine Multiple Columns into One Category Column in Pandas бесплатно в качестве 4к (2к / 1080p)

У нас вы можете скачать бесплатно How to Combine Multiple Columns into One Category Column in Pandas или посмотреть видео с ютуба в максимальном доступном качестве.

Для скачивания выберите вариант из формы ниже:

  • Информация по загрузке:

Cкачать музыку How to Combine Multiple Columns into One Category Column in Pandas бесплатно в формате MP3:

Если иконки загрузки не отобразились, ПОЖАЛУЙСТА, НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если у вас возникли трудности с загрузкой, пожалуйста, свяжитесь с нами по контактам, указанным в нижней части страницы.
Спасибо за использование сервиса video2dn.com

Описание к видео How to Combine Multiple Columns into One Category Column in Pandas

Discover how to transform your DataFrame in Pandas by combining multiple columns into one category column with clear value labels.
---
This video is based on the question https://stackoverflow.com/q/73635605/ asked by the user 'buhtz' ( https://stackoverflow.com/u/4865723/ ) and on the answer https://stackoverflow.com/a/73635685/ provided by the user 'ArchAngelPwn' ( https://stackoverflow.com/u/17750431/ ) at 'Stack Overflow' website. Thanks to these great users and Stackexchange community for their contributions.

Visit these links for original content and any more details, such as alternate solutions, latest updates/developments on topic, comments, revision history etc. For example, the original title of the Question was: Combine multiple columns into one category column using the column names as value label

Also, Content (except music) licensed under CC BY-SA https://meta.stackexchange.com/help/l...
The original Question post is licensed under the 'CC BY-SA 4.0' ( https://creativecommons.org/licenses/... ) license, and the original Answer post is licensed under the 'CC BY-SA 4.0' ( https://creativecommons.org/licenses/... ) license.

If anything seems off to you, please feel free to write me at vlogize [AT] gmail [DOT] com.
---
Transforming Dataframes in Pandas: A Guide to Combining Columns into One

When working with DataFrames in Pandas, you may find yourself in a scenario where you want to consolidate multiple columns into a single column based on some conditions. This article addresses a common problem: how to combine multiple boolean columns into a single category column while using the column names as value labels. Let’s take a closer look at how to achieve this transformation in a clean and efficient manner.

Understanding the Problem

Suppose you have the following DataFrame:

[[See Video to Reveal this Text or Code Snippet]]

Your goal is to transform this DataFrame into the following format:

[[See Video to Reveal this Text or Code Snippet]]

Key Requirements

You want to create a new column, group, which consists of the names of the columns originally containing True values.

Each row can only have one True value at most, which simplifies our process.

The Solution: Using Pandas Tools

While it might seem that you need to apply a complex operation, there’s a more straightforward approach using melt combined with filtering. Here’s how to do it step by step:

Step 1: Melt the DataFrame

The first thing you’ll do is to melt the DataFrame. The melt function is used to transform or reshape your data by specifying the identifier variable(s). In this case, we’ll keep the ID column and melt the other boolean columns.

[[See Video to Reveal this Text or Code Snippet]]

After this operation, you will get the following DataFrame:

[[See Video to Reveal this Text or Code Snippet]]

Step 2: Filter for True Values

Next, you will want to filter for only those rows where the value column is True. This will give you the result you are aiming for.

[[See Video to Reveal this Text or Code Snippet]]

Complete Code Example

Putting it all together, here’s the final code:

[[See Video to Reveal this Text or Code Snippet]]

Conclusion

By leveraging the melt function and filtering based on the boolean values, you can efficiently combine multiple columns into one category column in Pandas. This approach not only keeps the code clean and readable but also uses Pandas' powerful built-in functionalities.

Feel free to use this technique in your data manipulation tasks to keep your DataFrames organized and easy to work with!

Комментарии

Информация по комментариям в разработке

Похожие видео

  • О нас
  • Контакты
  • Отказ от ответственности - Disclaimer
  • Условия использования сайта - TOS
  • Политика конфиденциальности

video2dn Copyright © 2023 - 2025

Контакты для правообладателей [email protected]