Logo video2dn
  • Сохранить видео с ютуба
  • Категории
    • Музыка
    • Кино и Анимация
    • Автомобили
    • Животные
    • Спорт
    • Путешествия
    • Игры
    • Люди и Блоги
    • Юмор
    • Развлечения
    • Новости и Политика
    • Howto и Стиль
    • Diy своими руками
    • Образование
    • Наука и Технологии
    • Некоммерческие Организации
  • О сайте

Скачать или смотреть CodeRabbit: Agentic AI Code Review Platform with Deep Context Analysis

  • Yujian Tang
  • 2025-05-23
  • 200
CodeRabbit: Agentic AI Code Review Platform with Deep Context Analysis
CodeRabbitcode reviewAI copilotGitHub integrationpull requestsAST analysiscode graphsandbox environmentensemble modelsstyle guideslintersformattersSonarQubesecurity scanningdocumentation generationfeature planningweb searchtool integrationopen sourceephemeral processingSlack integrationcode qualityrefactoringunit testscode smellscustom instructionssequence diagramsnoise reductionorg learningdeveloper workflow
  • ok logo

Скачать CodeRabbit: Agentic AI Code Review Platform with Deep Context Analysis бесплатно в качестве 4к (2к / 1080p)

У нас вы можете скачать бесплатно CodeRabbit: Agentic AI Code Review Platform with Deep Context Analysis или посмотреть видео с ютуба в максимальном доступном качестве.

Для скачивания выберите вариант из формы ниже:

  • Информация по загрузке:

Cкачать музыку CodeRabbit: Agentic AI Code Review Platform with Deep Context Analysis бесплатно в формате MP3:

Если иконки загрузки не отобразились, ПОЖАЛУЙСТА, НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если у вас возникли трудности с загрузкой, пожалуйста, свяжитесь с нами по контактам, указанным в нижней части страницы.
Спасибо за использование сервиса video2dn.com

Описание к видео CodeRabbit: Agentic AI Code Review Platform with Deep Context Analysis

Aravind Putrevu from CodeRabbit presents their AI-powered code review platform that functions as a "code reviewing copilot" integrated directly into developers' existing workflows on GitHub and other Git platforms. The system performs comprehensive code reviews automatically when pull requests are raised, honoring existing developer tool chains including linters, formatters, and security scanners like SonarQube rather than replacing them. CodeRabbit supports custom review instructions, allowing teams to enforce specific style guides (like Google's JavaScript standards or React project guidelines) and define custom AST patterns for detecting code smells. The platform is widely adopted with 70,000 open source projects and nearly one million repositories. The demonstration shows an app for categorizing GitHub starred repositories, where CodeRabbit automatically reviews new pull requests and provides detailed summaries, file walkthroughs, sequence diagrams, and targeted comments. The system operates using an ensemble of models and agents assigned based on code context, creating sandboxes that clone entire repositories to build comprehensive understanding through "code graphs" - AST representations of the entire codebase. Advanced features include web search capabilities for real-time information about newer libraries or standards, integration with 20+ code quality and security tools, automated documentation generation, and AI-powered feature planning and execution. The platform emphasizes augmenting rather than replacing human reviewers, with ephemeral sandboxes ensuring code security and no persistent storage of reviews.

💥 Highlights:

AI code reviewer integrated into GitHub workflows
Honors existing tool chains (linters, formatters, security scanners)
Custom review instructions and style guide enforcement
70,000 open source projects and 1M repositories
Ensemble of models and agents for contextual analysis
Code graph creation with AST analysis of entire codebase
Sandbox environments for secure, ephemeral processing
Web search for real-time library and standard information
Integration with 20+ code quality and security tools
Automated documentation and docstring generation
AI-powered feature planning and execution
Slack integration and reporting capabilities
Organization-specific learning storage
Noise reduction from false positives
Augments rather than replaces human reviewers

🎙️ Presenter:

Aravind Putrevu from CodeRabbit

See more like this at lu.ma/oss4ai

Комментарии

Информация по комментариям в разработке

Похожие видео

  • О нас
  • Контакты
  • Отказ от ответственности - Disclaimer
  • Условия использования сайта - TOS
  • Политика конфиденциальности

video2dn Copyright © 2023 - 2025

Контакты для правообладателей [email protected]