Logo video2dn
  • Сохранить видео с ютуба
  • Категории
    • Музыка
    • Кино и Анимация
    • Автомобили
    • Животные
    • Спорт
    • Путешествия
    • Игры
    • Люди и Блоги
    • Юмор
    • Развлечения
    • Новости и Политика
    • Howto и Стиль
    • Diy своими руками
    • Образование
    • Наука и Технологии
    • Некоммерческие Организации
  • О сайте

Скачать или смотреть How to Delete Rows Containing None from a Pandas DataFrame

  • vlogize
  • 2025-05-28
  • 2
How to Delete Rows Containing None from a Pandas DataFrame
How can I delete row containing None from pandas dict?pythonpandaslistdictionary
  • ok logo

Скачать How to Delete Rows Containing None from a Pandas DataFrame бесплатно в качестве 4к (2к / 1080p)

У нас вы можете скачать бесплатно How to Delete Rows Containing None from a Pandas DataFrame или посмотреть видео с ютуба в максимальном доступном качестве.

Для скачивания выберите вариант из формы ниже:

  • Информация по загрузке:

Cкачать музыку How to Delete Rows Containing None from a Pandas DataFrame бесплатно в формате MP3:

Если иконки загрузки не отобразились, ПОЖАЛУЙСТА, НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если у вас возникли трудности с загрузкой, пожалуйста, свяжитесь с нами по контактам, указанным в нижней части страницы.
Спасибо за использование сервиса video2dn.com

Описание к видео How to Delete Rows Containing None from a Pandas DataFrame

Learn how to efficiently delete rows from a Pandas DataFrame that contain None values using Python. Get step-by-step guidance and code examples.
---
This video is based on the question https://stackoverflow.com/q/65606375/ asked by the user 'PyNoob' ( https://stackoverflow.com/u/14942703/ ) and on the answer https://stackoverflow.com/a/65606567/ provided by the user 'David Erickson' ( https://stackoverflow.com/u/6366770/ ) at 'Stack Overflow' website. Thanks to these great users and Stackexchange community for their contributions.

Visit these links for original content and any more details, such as alternate solutions, latest updates/developments on topic, comments, revision history etc. For example, the original title of the Question was: How can I delete row containing None from pandas dict?

Also, Content (except music) licensed under CC BY-SA https://meta.stackexchange.com/help/l...
The original Question post is licensed under the 'CC BY-SA 4.0' ( https://creativecommons.org/licenses/... ) license, and the original Answer post is licensed under the 'CC BY-SA 4.0' ( https://creativecommons.org/licenses/... ) license.

If anything seems off to you, please feel free to write me at vlogize [AT] gmail [DOT] com.
---
How to Delete Rows Containing None from a Pandas DataFrame

When working with data in Pandas, it's not uncommon to encounter situations where your DataFrame contains unwanted None values. These None values can interfere with data analysis and outputs, leading to potential inaccuracies and errors. In this guide, we will explore how to effectively delete rows containing None values from a Pandas DataFrame, with a particular focus on cases where None values are part of a dictionary column.

Understanding the Problem

Consider the following DataFrame, which contains betting odds for various football matches. Within this DataFrame, we have a column called full_time_result that holds a dictionary with different betting outcomes. However, one of the rows contains a dictionary with all values set to None, as shown below:

[[See Video to Reveal this Text or Code Snippet]]

Our goal is to remove the row that contains this undesirable None entry in the full_time_result column.

Step-by-Step Solution

To delete rows containing None in the full_time_result column of our DataFrame, we can utilize the apply() function along with a lambda function. This method allows us to iterate over each row in the specified column and perform checks to see if any value in the dictionary equals None. Here’s how to do it step by step:

Step 1: Use the apply() Function

The apply() function allows us to apply a specified function across an axis of the DataFrame. In our case, we will create a lambda function that looks through each dictionary's values.

Step 2: Check for None Values

Using Python’s built-in any() function, we check if any value in the dictionary equals None. If it does, we return True, indicating that this row should be filtered out. The lambda function will look like this:

[[See Video to Reveal this Text or Code Snippet]]

Step 3: Filter Out the Rows with None Values

To remove the rows with True results from our lambda function, we can negate the result with a tilde (~). The final code to delete rows with None values from the full_time_result column is:

[[See Video to Reveal this Text or Code Snippet]]

Example in Action

Here's the code in action, combined with creating a sample DataFrame:

[[See Video to Reveal this Text or Code Snippet]]

Expected Output

After running the code, the DataFrame will no longer contain the row with None values:

[[See Video to Reveal this Text or Code Snippet]]

Conclusion

Deleting rows that contain None values from a Pandas DataFrame is a critical step in data cleaning and preparation. By using the apply() function along with a lambda expression, you can seamlessly filter out unwanted rows and maintain the integrity of your dataset. Implement this approach in your data handling, and you'll streamline your analysis process, ensuring more reliable results.

Get started with your own datasets, and let us know in the comments if you have any questions or tips for working with Pandas!

Комментарии

Информация по комментариям в разработке

Похожие видео

  • О нас
  • Контакты
  • Отказ от ответственности - Disclaimer
  • Условия использования сайта - TOS
  • Политика конфиденциальности

video2dn Copyright © 2023 - 2025

Контакты для правообладателей [email protected]