Logo video2dn
  • Сохранить видео с ютуба
  • Категории
    • Музыка
    • Кино и Анимация
    • Автомобили
    • Животные
    • Спорт
    • Путешествия
    • Игры
    • Люди и Блоги
    • Юмор
    • Развлечения
    • Новости и Политика
    • Howto и Стиль
    • Diy своими руками
    • Образование
    • Наука и Технологии
    • Некоммерческие Организации
  • О сайте

Скачать или смотреть Bridging Linguistic Theory and AI: Usage-Based Learning in Humans and Machines (COLING '25 Tutorial)

  • SIGNAL Lab
  • 2025-02-25
  • 72
Bridging Linguistic Theory and AI: Usage-Based Learning in Humans and Machines (COLING '25 Tutorial)
  • ok logo

Скачать Bridging Linguistic Theory and AI: Usage-Based Learning in Humans and Machines (COLING '25 Tutorial) бесплатно в качестве 4к (2к / 1080p)

У нас вы можете скачать бесплатно Bridging Linguistic Theory and AI: Usage-Based Learning in Humans and Machines (COLING '25 Tutorial) или посмотреть видео с ютуба в максимальном доступном качестве.

Для скачивания выберите вариант из формы ниже:

  • Информация по загрузке:

Cкачать музыку Bridging Linguistic Theory and AI: Usage-Based Learning in Humans and Machines (COLING '25 Tutorial) бесплатно в формате MP3:

Если иконки загрузки не отобразились, ПОЖАЛУЙСТА, НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если у вас возникли трудности с загрузкой, пожалуйста, свяжитесь с нами по контактам, указанным в нижней части страницы.
Спасибо за использование сервиса video2dn.com

Описание к видео Bridging Linguistic Theory and AI: Usage-Based Learning in Humans and Machines (COLING '25 Tutorial)

Full recording of the tutorial "Bridging Linguistic Theory and AI: Usage-Based Learning in Humans and Machines" from COLING 2025 in Abu Dhabi, UAE. Presented by Dr. Claire Bonial (DEVCOM US Army Research Lab), Dr. Harish Tayyar Madabushi (University of Bath), Dr. Nikhil Krishnaswamy (Colorado State University), and Dr. James Pustejovsky (Brandeis University). The tutorial website (including slide decks used) can be found at: (sites.google.com/view/linguistic-theory-and-ai/home)

Usage-based theories of human language, such as Construction Grammar, have been compelling theoretical lenses through which to view and evaluate what LLMs know and understand of language because of the parallels between usage-based learning and the data driven "learning'' of pre-trained models. However, a key difference between a usage-based learning account for humans and that of LLMs is in embodiment and multimodality---for the most part, LLMs use text alone, whereas usage-based theories posit that each token of linguistic experience is stored with a wealth of experiential information that enriches the symbol through cross-modal association. Therefore, the first goal of this tutorial is to provide a summary of language acquisition and second language learning from a usage-based theoretical linguistic perspective. With this understanding of human usage-based learning, we will turn to evidence demonstrating the ways in which machine learning, primarily via large, pre-trained vision and language models, does and does not parallel human learning. The overarching goal of this is not to say that the two processes are similar or dissimilar in order to conclude that dissimilarity denotes inferiority (if the knowledge arrived at is the same, then it may not matter how it was learned). Rather, we explore the resulting differences in what is known and understood about the world, and take this as a starting point for considering how to supplement and improve natural language understanding (NLU), particularly for physically situated applications.

Комментарии

Информация по комментариям в разработке

Похожие видео

  • О нас
  • Контакты
  • Отказ от ответственности - Disclaimer
  • Условия использования сайта - TOS
  • Политика конфиденциальности

video2dn Copyright © 2023 - 2025

Контакты для правообладателей [email protected]