Logo video2dn
  • Сохранить видео с ютуба
  • Категории
    • Музыка
    • Кино и Анимация
    • Автомобили
    • Животные
    • Спорт
    • Путешествия
    • Игры
    • Люди и Блоги
    • Юмор
    • Развлечения
    • Новости и Политика
    • Howto и Стиль
    • Diy своими руками
    • Образование
    • Наука и Технологии
    • Некоммерческие Организации
  • О сайте

Скачать или смотреть Coding Homework 1: Breaking SHA-1 CS6260: Applied Cryptography Fall2025 Solved

  • Ankit Coding
  • 2025-10-11
  • 1
Coding Homework 1: Breaking SHA-1 CS6260: Applied Cryptography Fall2025 Solved
  • ok logo

Скачать Coding Homework 1: Breaking SHA-1 CS6260: Applied Cryptography Fall2025 Solved бесплатно в качестве 4к (2к / 1080p)

У нас вы можете скачать бесплатно Coding Homework 1: Breaking SHA-1 CS6260: Applied Cryptography Fall2025 Solved или посмотреть видео с ютуба в максимальном доступном качестве.

Для скачивания выберите вариант из формы ниже:

  • Информация по загрузке:

Cкачать музыку Coding Homework 1: Breaking SHA-1 CS6260: Applied Cryptography Fall2025 Solved бесплатно в формате MP3:

Если иконки загрузки не отобразились, ПОЖАЛУЙСТА, НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если у вас возникли трудности с загрузкой, пожалуйста, свяжитесь с нами по контактам, указанным в нижней части страницы.
Спасибо за использование сервиса video2dn.com

Описание к видео Coding Homework 1: Breaking SHA-1 CS6260: Applied Cryptography Fall2025 Solved

TO GET THIS SOLUTION VISIT:
https://www.ankitcodinghub.com/produc...

---

Email: [email protected]
WhatsApp: +1 419 877 7882
Get a quote: https://www.ankitcodinghub.com/servic...

We deliver fast, professional, and affordable academic help.

---

Description
Description


































































5/5 - (1 vote)

Objectives: Understanding UF-CMA by attacking a real hash function and integrity scheme.


1.      Introduction


The goal of this assignment is to break the security of a deterministic hash-based MAC. Namely, let H be the hash function constructed from the compression hash function h via the Merkle-Damg˚ard transform as per Figure 1. Then, to tag a message M consisting of b-bit blocks under a b-bit key K we compute tag ←H(K ∥M).





Recall: Merkle-Damg˚ard Transform


M[1]               M[2]                                        M[m]                ⟨m⟩


0n  …


Figure 1: A visualization of the general Merkle-Damg˚ard transform, where h is a function compression an (n + b)-bit input into an n-bit output, M[i] is the ith b-bit block of the message M, and ⟨m⟩ is the b-bit encoding of the message’s block count, m.





We have provided you with several Python files (See Code section) that you will work with in this assignment. In particular, you will be demonstrating that the MAC described above is not UF-CMA secure by modifying student.py to create a forged message and a corresponding tag. Detailed explanations can be found in the following section.


You will be submitting your deliverables via Gradescope.


2.       Attack
2.1 Scheme
The MAC prepends a secret symmetric key to an input message, then passes it to the SHA1 algorithm:


tag = Sha1(password ∥ message)


You don’t know the symmetric key, but you do know what length it might be (See the Objective section)


2.2 Length Extension Attack
A length extension attack is a type of attack where an attacker can use the hash of a message and the length of the message to calculate the hash of that message prepended to another message, where the second message is chosen by the attacker. This can be done without knowing the content of the first message.


This MAC is vulnerable to a length extension attack. Specifically, it’s possible to forge a valid (message, tag) pair where the message has some arbitrary data appended to the end, while only knowing the length of the password (not its actual value).


This is problematic in the MAC construction above because an attacker can include extra information at the end of the message and produce a valid hash without knowing the secret.


2.3 Resources
Apart from the course material, the only resource you may use for this assignment is the RFC for the Sha1 algorithm that describes how SHA-1 works. You must pay


special attention to Sections 3–5 and 6.1. You will also need to carefully read over the code files we have provided you.


3.      Code
This section describes the code you have been provided and what you need to modify.


3.1 Files
You’ve been provided the following library:



py contains your exploit code that will successfully create a forged message that passes the MAC without knowing the secret key.

This is the only file you will modify for submission.



py contains a custom Sha1 implementation modeled after Python’s hashlib module, but is extended with extra parameters that may help with length extension attacks. You will likely need to refer to the RFC to understand how to use them.
py simulates a UF-CMA adversarial scenario by including the necessary oracles.
py runs your exploit and lets you know whether or not you’ve successfully forged a message.
txt is an auto-generated secret key used by the oracle when you run the tests. Note that the Gradescope autograder will obviously use different keys.

The docstrings in each file provide further details about these modules; read them!


3.2 Running the Code
You can install the latest version of Python 3 for your system from here; there are no


extra dependencies to install. Older versions of Python 3 may work, but we cannot make guarantees. To run the local auto-grader, simply execute:


python grader.py [your GT username]


3.3 Objective
You should make student.main() return a (message, tag) pair that:



includes at least the original message and your GT username in the forged message,
hasn’t been submitted to the oracle, and
passes the MAC.

(where message is a sequence of bytes and tag is a hexadecimal string value)


There are two parts to this:



You should be able to do this for a fixed key length of 64 bytes. (15 points) 2. You should then extend your solution to work for a variable, arbitrary key length of up to 100 bytes. (5 points)

4.      Submission
You will need to submit the following de

Комментарии

Информация по комментариям в разработке

Похожие видео

  • О нас
  • Контакты
  • Отказ от ответственности - Disclaimer
  • Условия использования сайта - TOS
  • Политика конфиденциальности

video2dn Copyright © 2023 - 2025

Контакты для правообладателей [email protected]