Logo video2dn
  • Сохранить видео с ютуба
  • Категории
    • Музыка
    • Кино и Анимация
    • Автомобили
    • Животные
    • Спорт
    • Путешествия
    • Игры
    • Люди и Блоги
    • Юмор
    • Развлечения
    • Новости и Политика
    • Howto и Стиль
    • Diy своими руками
    • Образование
    • Наука и Технологии
    • Некоммерческие Организации
  • О сайте

Скачать или смотреть Episode 3 Asthma & Pneumonia Wheeze Classification Using Machine Learning Python Code

  • ResDevEng
  • 2025-09-20
  • 95
Episode 3 Asthma & Pneumonia Wheeze Classification Using Machine Learning Python Code
Spectral analysis of lung sounds Python codeAsthma pneumonia wheezing detection machine learningRespiratory sound classificationAsthma vs pneumonia classification IEEE paperIEEE paper lung sound classification implementationLung sound classification project explainedGitHub project lung sound classificationmishauroojkhanresearchpediaieeeprojectsBiomedical signal processing project ideasAsthma pneumonia wheezing detection demoRespiratory sound classification code
  • ok logo

Скачать Episode 3 Asthma & Pneumonia Wheeze Classification Using Machine Learning Python Code бесплатно в качестве 4к (2к / 1080p)

У нас вы можете скачать бесплатно Episode 3 Asthma & Pneumonia Wheeze Classification Using Machine Learning Python Code или посмотреть видео с ютуба в максимальном доступном качестве.

Для скачивания выберите вариант из формы ниже:

  • Информация по загрузке:

Cкачать музыку Episode 3 Asthma & Pneumonia Wheeze Classification Using Machine Learning Python Code бесплатно в формате MP3:

Если иконки загрузки не отобразились, ПОЖАЛУЙСТА, НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если у вас возникли трудности с загрузкой, пожалуйста, свяжитесь с нами по контактам, указанным в нижней части страницы.
Спасибо за использование сервиса video2dn.com

Описание к видео Episode 3 Asthma & Pneumonia Wheeze Classification Using Machine Learning Python Code

IEEE Paper Implementation on Kaggle with Python
Episode 3 Asthma & Pneumonia Wheeze Classification Using Machine Learning Python Code
Python implementation of the IEEE paper “Spectral Analysis of Lung Sounds for Classification of Asthma and Pneumonia Wheezing”.
Includes Kaggle dataset experiments, signal processing, and ML classification with code available on GitHub. Perfect for biomedical signal processing, machine learning, and healthcare AI projects.

In this video, I break down the IEEE research paper:
“Spectral Analysis of Lung Sounds for Classification of Asthma and Pneumonia Wheezing”
📍 Published at the IEEE International Conference on Electrical, Communication, and Computer Engineering (ICECCE), Istanbul, Turkey
🔗 IEEE Paper: https://ieeexplore.ieee.org/document/...
🔗 IEEE Paper Explained:    • Asthma & Pneumonia Detection from Lung Sou...  
Conference Location: Istanbul, Turkey

💻 Code Implementations:
Github : https://github.com/mishaurooj/spectra...
Kaggle:
1. https://www.kaggle.com/code/mishauroo...
2. https://www.kaggle.com/code/crdkhan/2...
3. https://www.kaggle.com/code/crdkhan/3...

Python Code implementation Video:
1.    • Episode 1: Asthma & Pneumonia Wheeze Class...  
2.    • Episode 2: Asthma & Pneumonia Wheeze Class...  
3.    • Episode 3 Asthma & Pneumonia Wheeze Classi...  

Spectral analysis of lung sounds
Asthma and pneumonia classification
Wheezing detection using Python
Biomedical signal processing IEEE paper
Lung sound classification Kaggle
Python respiratory sound analysis
IEEE paper implementation GitHub
Machine learning for healthcare AI
Asthma wheezing detection dataset
Pneumonia lung sound classification
How to classify lung sounds using spectral analysis in Python
Asthma vs pneumonia wheeze detection with machine learning

#ai #artificialintelligence #machinelearning
Appreciate you tuning in! 🙌 If you’re ready for tailored advice and hands-on guidance, book a one-on-one consultation with me today. Let’s connect and take your journey to the next level!
Upwork: https://www.upwork.com/freelancers/~0...

Chapters
0:09 – Goal of the Notebook: Classification with machine learning models.
0:22 – Features Recap: Loading Excel file of extracted features.
0:41 – Feeding Models: Splitting into train/test, evaluating with accuracy, precision, recall, F1.
1:19 – Loading Features File: Structure of features + labels.
1:56 – Train-Test Split: 70% training, 30% testing.
2:16 – Models Overview: Intro to ML models for lung sound classification.
2:26 – Linear Discriminant Analysis (LDA): Straight-line classifier, interpretable but limited.
2:46 – k-NN (k-Nearest Neighbors): Rule-based, works on noisy data.
3:02 – Decision Tree (Fine Tree): Nonlinear thresholds, strong performance.
3:37 – Fine k-NN: Very sensitive, memorizes training.
4:00 – Subspace k-NN: Smoothed, better than fine k-NN.
4:16 – Bagged Trees: Ensemble trees, lower variance, strong model.
4:41 – Support Vector Machines (commented out).
4:46 – Metrics Defined: Accuracy, precision, recall, F1 score.
5:49 – Errors Explained: Type I (false positives), Type II (false negatives).
6:20 – Medical Lens: Importance of low false negatives in pneumonia.
6:36 – Confusion Matrices: Visualizing per-class performance.
7:00 – Dataset Split Numbers: 14k training samples, 6k test samples.
7:42 – Linear Discriminant Results: Strong asthma predictions, struggles with normal/pneumonia.
8:49 – Naïve Bayes Results: Assumptions break, poor accuracy.
9:32 – Fine Tree Results: Excellent performance, best so far.
10:44 – Fine k-NN Results: Strong asthma, weaker normal/pneumonia.
11:17 – Bagged Trees Results: Stable, rivals fine tree.
11:40 – Subspace k-NN Results: Better than fine k-NN, still overlaps.
12:11 – Summary Table: Accuracy of each model.
12:57 – Accuracy Leaders: Fine Tree (97.5%) & Bagged Trees (98.2%).
13:44 – F1 Score Comparison: FT & BT dominate, others weaker.
14:11 – Statistical Testing: Need significance test, not just accuracy.
14:35 – McNemar Test Explained: Testing if models differ significantly.
15:26 – Results of McNemar Test: FT significantly outperforms, BT close competitor.
16:25 – Strongest Model: Fine Tree = best choice for deployment.
17:08 – Weak vs Moderate vs Strong Models: Poor = NB, KNB; Moderate = LDA, k-NN; Strong = FT, BT.
17:35 – Conclusion: FT chosen as best classifier.
17:50 – Complete Workflow Recap: Preprocessing → Feature Extraction → Classification.
18:01 – Next Steps: Build applications, explore deep learning.
18:16 – Q&A + Code Sharing: Open for questions, notebook link shared.
18:28 – Outro & Subscribe.

Комментарии

Информация по комментариям в разработке

Похожие видео

  • О нас
  • Контакты
  • Отказ от ответственности - Disclaimer
  • Условия использования сайта - TOS
  • Политика конфиденциальности

video2dn Copyright © 2023 - 2025

Контакты для правообладателей [email protected]