Logo video2dn
  • Сохранить видео с ютуба
  • Категории
    • Музыка
    • Кино и Анимация
    • Автомобили
    • Животные
    • Спорт
    • Путешествия
    • Игры
    • Люди и Блоги
    • Юмор
    • Развлечения
    • Новости и Политика
    • Howto и Стиль
    • Diy своими руками
    • Образование
    • Наука и Технологии
    • Некоммерческие Организации
  • О сайте

Скачать или смотреть [SBLP] Prognosis: Black-Box Analysis of Network Protocol Implementations

  • Sociedade Brasileira de Computação
  • 2021-09-30
  • 158
[SBLP] Prognosis: Black-Box Analysis of Network Protocol Implementations
  • ok logo

Скачать [SBLP] Prognosis: Black-Box Analysis of Network Protocol Implementations бесплатно в качестве 4к (2к / 1080p)

У нас вы можете скачать бесплатно [SBLP] Prognosis: Black-Box Analysis of Network Protocol Implementations или посмотреть видео с ютуба в максимальном доступном качестве.

Для скачивания выберите вариант из формы ниже:

  • Информация по загрузке:

Cкачать музыку [SBLP] Prognosis: Black-Box Analysis of Network Protocol Implementations бесплатно в формате MP3:

Если иконки загрузки не отобразились, ПОЖАЛУЙСТА, НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если у вас возникли трудности с загрузкой, пожалуйста, свяжитесь с нами по контактам, указанным в нижней части страницы.
Спасибо за использование сервиса video2dn.com

Описание к видео [SBLP] Prognosis: Black-Box Analysis of Network Protocol Implementations

by Alexandra Silva


We present Prognosis, a framework offering automated black-box learning and analysis of models of network protocol implementations. Prognosis can learn models that vary in abstraction level from simple deterministic automata to models containing data operations, such as register updates, and can be used to unlock a variety of analysis techniques — model checking temporal properties, computing differences between models of two implementations of the same protocol, or improving testing via model-based test generation. Prognosis is modular and easily adaptable to different pro- tocols (e.g., TCP and QUIC) and their implementations. We use Prognosis to learn models of (parts of) three QUIC implementations—Quiche (Cloudflare), Google QUIC, and Facebook mvfst—and use these models to analyze the differences between the various implementations. Our analysis provides insights into different design choices and uncovers potential bugs. Concretely, we have found critical bugs in multiple QUIC implementations, which have been acknowledged by the developers. This is joint work with Tiago Ferreira (UCL), Harrison Brewton and Loris D’Antoni (University of Wisconsin–Madison).

Комментарии

Информация по комментариям в разработке

Похожие видео

  • О нас
  • Контакты
  • Отказ от ответственности - Disclaimer
  • Условия использования сайта - TOS
  • Политика конфиденциальности

video2dn Copyright © 2023 - 2025

Контакты для правообладателей [email protected]