Logo video2dn
  • Сохранить видео с ютуба
  • Категории
    • Музыка
    • Кино и Анимация
    • Автомобили
    • Животные
    • Спорт
    • Путешествия
    • Игры
    • Люди и Блоги
    • Юмор
    • Развлечения
    • Новости и Политика
    • Howto и Стиль
    • Diy своими руками
    • Образование
    • Наука и Технологии
    • Некоммерческие Организации
  • О сайте

Скачать или смотреть Reinforcement Learning From AI Feedback: A Cross-Model Analysis of Performance, Scalability and Bias

  • Computer Science & IT Conference Proceedings
  • 2025-11-14
  • 36
Reinforcement Learning From AI Feedback: A Cross-Model Analysis of Performance, Scalability and Bias
Reinforcement LearningAI FeedbackLarge Language ModelsAlignmentScaling
  • ok logo

Скачать Reinforcement Learning From AI Feedback: A Cross-Model Analysis of Performance, Scalability and Bias бесплатно в качестве 4к (2к / 1080p)

У нас вы можете скачать бесплатно Reinforcement Learning From AI Feedback: A Cross-Model Analysis of Performance, Scalability and Bias или посмотреть видео с ютуба в максимальном доступном качестве.

Для скачивания выберите вариант из формы ниже:

  • Информация по загрузке:

Cкачать музыку Reinforcement Learning From AI Feedback: A Cross-Model Analysis of Performance, Scalability and Bias бесплатно в формате MP3:

Если иконки загрузки не отобразились, ПОЖАЛУЙСТА, НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если у вас возникли трудности с загрузкой, пожалуйста, свяжитесь с нами по контактам, указанным в нижней части страницы.
Спасибо за использование сервиса video2dn.com

Описание к видео Reinforcement Learning From AI Feedback: A Cross-Model Analysis of Performance, Scalability and Bias

Reinforcement Learning From AI Feedback: A Cross-Model Analysis of Performance, Scalability and Bias

Le Van Nguyen (University of Wollongong, Australia) and Rory Sie (NIB Group, Australia)

Abstract

Reinforcement Learning with Human Feedback (RLHF) has significantly enhanced the performance of large language models (LLMs) in tasks such as summarization, dialogue generation, and content moderation. However, the reliance on human-annotated data makes RLHF expensive and difficult to scale. To address these challenges, Reinforcement Learning from AI Feedback (RLAIF) has emerged as a promising alternative. In RLAIF, AI-generated preference labels replace human feedback, offering a more cost-effective and scalable solution while maintaining competitive performance. Despite its success in single-model families, RLAIF’s generalizability across diverse model architectures and scales remains unclear. This study extends the evaluation of RLAIF by applying it to three different model families—T5, Phi-3.5, and LLaMa 3.2— representing a variety of model sizes and architectures. We compare RLAIF with traditional supervised fine-tuning (SFT) and examine the impact of model size on its effectiveness. Our findings reveal that RLAIF improves model alignment across all architectures, although the extent of the improvement varies depending on the model type. The research contributes to the broader discussion on improving the efficiency and scalability of reinforcement learning techniques for LLM alignment. By evaluating RLAIF across multiple architectures, our work provides practical guidance for implementing AI feedback-based alignment techniques that are applicable to a wide range of LLMs, advancing the field of AI model fine-tuning.

Keywords

Reinforcement Learning, AI Feedback, Large Language Models, Alignment, Scaling

Full Text : https://aircconline.com/csit/papers/v...
Abstract URL: https://aircconline.com/csit/abstract...
Volume URL : https://airccse.org/csit/V15N19.html

#reinforcementlearning #artificialintelligence #largelanguagemodels #alignment #scaling #scalability #naturallanguageprocessing

Комментарии

Информация по комментариям в разработке

Похожие видео

  • О нас
  • Контакты
  • Отказ от ответственности - Disclaimer
  • Условия использования сайта - TOS
  • Политика конфиденциальности

video2dn Copyright © 2023 - 2025

Контакты для правообладателей [email protected]