Logo video2dn
  • Сохранить видео с ютуба
  • Категории
    • Музыка
    • Кино и Анимация
    • Автомобили
    • Животные
    • Спорт
    • Путешествия
    • Игры
    • Люди и Блоги
    • Юмор
    • Развлечения
    • Новости и Политика
    • Howto и Стиль
    • Diy своими руками
    • Образование
    • Наука и Технологии
    • Некоммерческие Организации
  • О сайте

Скачать или смотреть Equidistribution of Unipotent Random Walks on Homogeneous spaces by Emmanuel Breuillard

  • International Centre for Theoretical Sciences
  • 2022-12-06
  • 332
Equidistribution of Unipotent Random Walks on Homogeneous spaces by Emmanuel Breuillard
  • ok logo

Скачать Equidistribution of Unipotent Random Walks on Homogeneous spaces by Emmanuel Breuillard бесплатно в качестве 4к (2к / 1080p)

У нас вы можете скачать бесплатно Equidistribution of Unipotent Random Walks on Homogeneous spaces by Emmanuel Breuillard или посмотреть видео с ютуба в максимальном доступном качестве.

Для скачивания выберите вариант из формы ниже:

  • Информация по загрузке:

Cкачать музыку Equidistribution of Unipotent Random Walks on Homogeneous spaces by Emmanuel Breuillard бесплатно в формате MP3:

Если иконки загрузки не отобразились, ПОЖАЛУЙСТА, НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если у вас возникли трудности с загрузкой, пожалуйста, свяжитесь с нами по контактам, указанным в нижней части страницы.
Спасибо за использование сервиса video2dn.com

Описание к видео Equidistribution of Unipotent Random Walks on Homogeneous spaces by Emmanuel Breuillard

PROGRAM : ERGODIC THEORY AND DYNAMICAL SYSTEMS (HYBRID)

ORGANIZERS : C. S. Aravinda (TIFR-CAM, Bengaluru), Anish Ghosh (TIFR, Mumbai) and Riddhi Shah (JNU, New Delhi)
DATE : 05 December 2022 to 16 December 2022
VENUE : Ramanujan Lecture Hall and Online

The programme will have an emphasis on the many recent exciting breakthroughs in the ergodic theory of group actions on homogeneous spaces. This subject, which also goes by the name "homogeneous dynamics" has seen dramatic advances in the last few decades. Homogeneous dynamics comprises the study of group actions on homogeneous spaces of Lie groups. The dynamics of these actions are extremely rich and have surprising connections to diverse parts of mathematics. An early example of such a connection is Margulis's proof of the long standing conjecture of Oppenheim regarding values taken by quadratic forms at integer points. The programme will feature mini courses as well as research level talks exploring recent advances in homogeneous dynamics and their connections to number theory and geometry. India has a strong tradition in this area and the programme will provide an occasion to celebrate the fundamental contributions of S. G. Dani, a pioneer in the subject who turns 75 this year. Young mathematicians, especially those with an interest in these areas are encouraged to apply.

ICTS is committed to building an environment that is inclusive, non discriminatory and welcoming of diverse individuals. We especially encourage the participation of women and other under-represented groups.


CONTACT US: [email protected]

PROGRAM LINK: https://www.icts.res.in/program/etds2022

Table of Contents (powered by https://videoken.com)
0:00:00 Equidistribution of Unipotent Random Walks on Homogeneous spaces
0:01:35 Plan
0:02:37 1. Review of the Choquet-Deny property
0:05:35 2. Raghunathan-Dani conjectures: Ratner's theorem (1990)
0:09:14 3. Benoist-Quint '08:
0:15:17 3. Benoist-Quint
0:18:12 4. Random Ratner's theorem
0:25:56 5. The classical local limit theorem on R
0:34:02 6. The Heisenberg group
0:46:36 Picture
0:47:38 6. The Heisenberg group, proof of the LLT
0:49:30 6. The Heisenberg group, Diaconis-Hough "path-swap"
0:51:40 7. General nilpotent groups
0:51:55 7. General nilpotent groups: non-centered CLT
0:52:38 7. General nilpotent groups: associated graded group
0:54:16 7. General nilpotent groups: non-centered LLT
0:56:09 Q&A
1:09:14 Wrap Up

Комментарии

Информация по комментариям в разработке

Похожие видео

  • О нас
  • Контакты
  • Отказ от ответственности - Disclaimer
  • Условия использования сайта - TOS
  • Политика конфиденциальности

video2dn Copyright © 2023 - 2025

Контакты для правообладателей [email protected]