Logo video2dn
  • Сохранить видео с ютуба
  • Категории
    • Музыка
    • Кино и Анимация
    • Автомобили
    • Животные
    • Спорт
    • Путешествия
    • Игры
    • Люди и Блоги
    • Юмор
    • Развлечения
    • Новости и Политика
    • Howto и Стиль
    • Diy своими руками
    • Образование
    • Наука и Технологии
    • Некоммерческие Организации
  • О сайте

Скачать или смотреть How to Create Your Own Pipe in asyncio.create_subprocess_exec

  • vlogize
  • 2025-05-25
  • 1
How to Create Your Own Pipe in asyncio.create_subprocess_exec
  • ok logo

Скачать How to Create Your Own Pipe in asyncio.create_subprocess_exec бесплатно в качестве 4к (2к / 1080p)

У нас вы можете скачать бесплатно How to Create Your Own Pipe in asyncio.create_subprocess_exec или посмотреть видео с ютуба в максимальном доступном качестве.

Для скачивания выберите вариант из формы ниже:

  • Информация по загрузке:

Cкачать музыку How to Create Your Own Pipe in asyncio.create_subprocess_exec бесплатно в формате MP3:

Если иконки загрузки не отобразились, ПОЖАЛУЙСТА, НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если у вас возникли трудности с загрузкой, пожалуйста, свяжитесь с нами по контактам, указанным в нижней части страницы.
Спасибо за использование сервиса video2dn.com

Описание к видео How to Create Your Own Pipe in asyncio.create_subprocess_exec

Learn how to use asyncio's subprocess capabilities effectively! This guide explains how to handle output from subprocesses, avoiding common pitfalls like deadlocks.
---
This video is based on the question https://stackoverflow.com/q/73405595/ asked by the user 'James Ayres' ( https://stackoverflow.com/u/14474514/ ) and on the answer https://stackoverflow.com/a/73406964/ provided by the user 'James Ayres' ( https://stackoverflow.com/u/14474514/ ) at 'Stack Overflow' website. Thanks to these great users and Stackexchange community for their contributions.

Visit these links for original content and any more details, such as alternate solutions, latest updates/developments on topic, comments, revision history etc. For example, the original title of the Question was: How to create my own pipe in asyncio.create_subprocess_exec

Also, Content (except music) licensed under CC BY-SA https://meta.stackexchange.com/help/l...
The original Question post is licensed under the 'CC BY-SA 4.0' ( https://creativecommons.org/licenses/... ) license, and the original Answer post is licensed under the 'CC BY-SA 4.0' ( https://creativecommons.org/licenses/... ) license.

If anything seems off to you, please feel free to write me at vlogize [AT] gmail [DOT] com.
---
Handling Output from Subprocesses in asyncio.create_subprocess_exec

When working with asyncio in Python, creating subprocesses can be crucial, especially when fetching files over a network. In the case of pulling files with a command like p4 print, you may find that dealing with output can lead to issues such as deadlocks. In this guide, we'll explore how to create custom pipes for subprocesses and why adopting a different approach might be beneficial.

The Problem: Deadlocks with Standard Pipes

In some cases, trying to use asyncio.subprocess.PIPE for managing stdout and stderr can lead to deadlocks, particularly when your subprocess generates a significant amount of output. The main issue arises when the pipe fills up, and the child process cannot write any more data until the parent reads from it. This can instantly lead to your application hanging.

Example of the Deadlock In Action

Attempting to implement your own pipe can sometimes result in frustrating errors, such as:

OSError: [Errno 9] Bad file descriptor: This error may occur if the file descriptor for writing is not set up properly.

AttributeError: 'NoneType' object has no attribute 'read': This indicates an issue where the expected output cannot be read, typically because the subprocess did not run successfully or has closed its output stream prematurely.

Here's a snippet that illustrates the first approach that can potentially lead to deadlocks:

[[See Video to Reveal this Text or Code Snippet]]

In this example, os.pipe() was used to attempt to create a custom pipeline, which ended up causing issues and errors when the subprocess would hang upon producing output.

A Better Solution: Use communicate()

Instead of managing your own pipes, a more effective solution is to utilize the communicate() method provided by the asyncio subprocess module. This avoids deadlocks altogether and simplifies error handling.

Updated Code Example

Here's how you can modify your subprocess code to use communicate() effectively:

[[See Video to Reveal this Text or Code Snippet]]

Breakdown of the Improvement

Simplification: By using asyncio.subprocess.PIPE, you no longer need to manually write to and read from the pipe.

Safety with Communicate: The communicate() method handles the reading of both stdout and stderr appropriately, preventing memory issues and blocking.

Error Handling: It becomes more straightforward to decide which output to return based on the returncode.

Conclusion

In conclusion, while attempting to create your own pipe might seem like a valid approach to solving subprocess output issues, using asyncio's built-in functionality provides a more robust and efficient solution. If you're dealing with potentially high-output processes, opting for communicate() will help ensure that your program runs smoothly without deadlocks.
If you have any further suggestions or optimization techniques for handling subprocesses effectively, feel free to share!

Комментарии

Информация по комментариям в разработке

Похожие видео

  • О нас
  • Контакты
  • Отказ от ответственности - Disclaimer
  • Условия использования сайта - TOS
  • Политика конфиденциальности

video2dn Copyright © 2023 - 2025

Контакты для правообладателей [email protected]