Logo video2dn
  • Сохранить видео с ютуба
  • Категории
    • Музыка
    • Кино и Анимация
    • Автомобили
    • Животные
    • Спорт
    • Путешествия
    • Игры
    • Люди и Блоги
    • Юмор
    • Развлечения
    • Новости и Политика
    • Howto и Стиль
    • Diy своими руками
    • Образование
    • Наука и Технологии
    • Некоммерческие Организации
  • О сайте

Скачать или смотреть Creating Duplicate Rows in Two Data Frames Based on Column Values in Pandas and Numpy

  • vlogize
  • 2025-09-14
  • 0
Creating Duplicate Rows in Two Data Frames Based on Column Values in Pandas and Numpy
Create duplicate rows in two data frames based on column values (pandas & numpy)python 3.xpandasdataframenumpy
  • ok logo

Скачать Creating Duplicate Rows in Two Data Frames Based on Column Values in Pandas and Numpy бесплатно в качестве 4к (2к / 1080p)

У нас вы можете скачать бесплатно Creating Duplicate Rows in Two Data Frames Based on Column Values in Pandas and Numpy или посмотреть видео с ютуба в максимальном доступном качестве.

Для скачивания выберите вариант из формы ниже:

  • Информация по загрузке:

Cкачать музыку Creating Duplicate Rows in Two Data Frames Based on Column Values in Pandas and Numpy бесплатно в формате MP3:

Если иконки загрузки не отобразились, ПОЖАЛУЙСТА, НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если у вас возникли трудности с загрузкой, пожалуйста, свяжитесь с нами по контактам, указанным в нижней части страницы.
Спасибо за использование сервиса video2dn.com

Описание к видео Creating Duplicate Rows in Two Data Frames Based on Column Values in Pandas and Numpy

Learn how to create duplicate rows in two data frames using `Pandas` and `Numpy` methods efficiently!
---
This video is based on the question https://stackoverflow.com/q/67496950/ asked by the user 'Manglu' ( https://stackoverflow.com/u/9168000/ ) and on the answer https://stackoverflow.com/a/67497053/ provided by the user 'Anurag Dabas' ( https://stackoverflow.com/u/14289892/ ) at 'Stack Overflow' website. Thanks to these great users and Stackexchange community for their contributions.

Visit these links for original content and any more details, such as alternate solutions, latest updates/developments on topic, comments, revision history etc. For example, the original title of the Question was: Create duplicate rows in two data frames based on column values (pandas & numpy)

Also, Content (except music) licensed under CC BY-SA https://meta.stackexchange.com/help/l...
The original Question post is licensed under the 'CC BY-SA 4.0' ( https://creativecommons.org/licenses/... ) license, and the original Answer post is licensed under the 'CC BY-SA 4.0' ( https://creativecommons.org/licenses/... ) license.

If anything seems off to you, please feel free to write me at vlogize [AT] gmail [DOT] com.
---
Creating Duplicate Rows in Two Data Frames Based on Column Values in Pandas and Numpy

When working with data in Python, especially with the Pandas library, you may encounter situations where you need to manipulate data frames to create duplicates based on specific column values. This can become particularly tricky when handling NaN values or when you want to ensure certain rows are repeated under the right conditions. In this post, we'll address the problem of creating duplicate rows across two data frames using Pandas and Numpy, providing a step-by-step solution.

The Challenge

Suppose you have two data frames as follows:

Data Frame 1: DF1

no1quantityno2abc3123pqr5NaNData Frame 2: DF2

no1serialabc10pqr20Your objective is to create two new data frames, DF3 and DF4:

Desired Output for DF3

no1quantityabc31233pqr5Desired Output for DF4

no1serialabc1012310pqr20The challenge is to ensure that the serial number for 123 in DF4 is 10, consistent with its corresponding no1 value in DF2.

Solution Steps

Step 1: Creating DF3

To create DF3, we need to manipulate DF1 to include the values from the no2 column while maintaining the quantity associated with them. This can be achieved using a combination of several methods in Pandas.

Here is how to do it:

[[See Video to Reveal this Text or Code Snippet]]

Explanation:

append(): This method combines the no1 and no2 columns into a single Series.

to_frame(): Converts the Series back into a DataFrame, naming the column no1.

assign(): This method adds the quantity column from DF1.

reset_index(): Resets the index of the new DataFrame.

dropna(): Removes any rows with NaN values, which we must watch out for, particularly affected by no2.

Output of DF3:

no1quantityabc3pqr51233Step 2: Creating DF4

Now, we aim to create DF4 that maps the serial values correctly.

Here's how to do it:

[[See Video to Reveal this Text or Code Snippet]]

Explanation:

merge(): This function combines DF3 and DF2 on the no1 column.

groupby(): This groups the combined DataFrame by the quantity column.

ffill(): This method fills the missing values forward, ensuring that serial numbers are correctly assigned to duplicate no1 values.

Output of DF4:

no1serialabc1012310pqr20Conclusion

By following the steps outlined above, you can efficiently create duplicate rows in two data frames based on their column values using Pandas. This process not only simplifies data handling but also enhances the overall data manipulation experience in the Python environment. Whether you're handling financial data, inventory lists, or any dataset where duplication is necessary, mastering these methods will enrich your data processing toolbox.

Feel free to experiment with your own datasets, and let this guide aid your journey into the world of data manipulation with Pandas and Numpy!

Комментарии

Информация по комментариям в разработке

Похожие видео

  • О нас
  • Контакты
  • Отказ от ответственности - Disclaimer
  • Условия использования сайта - TOS
  • Политика конфиденциальности

video2dn Copyright © 2023 - 2025

Контакты для правообладателей [email protected]