Logo video2dn
  • Сохранить видео с ютуба
  • Категории
    • Музыка
    • Кино и Анимация
    • Автомобили
    • Животные
    • Спорт
    • Путешествия
    • Игры
    • Люди и Блоги
    • Юмор
    • Развлечения
    • Новости и Политика
    • Howto и Стиль
    • Diy своими руками
    • Образование
    • Наука и Технологии
    • Некоммерческие Организации
  • О сайте

Скачать или смотреть High-Performance Computing with Python: Numba Vectorize

  • cscsch
  • 2019-07-24
  • 3757
High-Performance Computing with Python: Numba Vectorize
CSCSHPCPythonLuganoHigh-Performance ComputingNumba
  • ok logo

Скачать High-Performance Computing with Python: Numba Vectorize бесплатно в качестве 4к (2к / 1080p)

У нас вы можете скачать бесплатно High-Performance Computing with Python: Numba Vectorize или посмотреть видео с ютуба в максимальном доступном качестве.

Для скачивания выберите вариант из формы ниже:

  • Информация по загрузке:

Cкачать музыку High-Performance Computing with Python: Numba Vectorize бесплатно в формате MP3:

Если иконки загрузки не отобразились, ПОЖАЛУЙСТА, НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если у вас возникли трудности с загрузкой, пожалуйста, свяжитесь с нами по контактам, указанным в нижней части страницы.
Спасибо за использование сервиса video2dn.com

Описание к видео High-Performance Computing with Python: Numba Vectorize

The Swiss National Supercomputing Centre is pleased to announce that the "High-Performance Computing with Python" course will be held from July 02-04, 2019 at CSCS in Lugano, Switzerland.

Content:
Python is increasingly used in high-performance computing projects. It can be used either as a high-level interface to existing HPC applications and libraries, as embedded interpreter, or directly.

This course combines lectures and hands-on sessions. We will show how Python can be used on parallel architectures and how to optimize critical parts of the kernel using various tools.
The following topics will be covered:
Interactive parallel programming with IPython
Profiling and optimization
High-performance NumPy
Just-in-time compilation with Numba
Distributed-memory parallel programming with Python and MPI
Bindings to other programming languages and HPC libraries
Interfaces to GPUs

Target Audience:
This course addresses scientists with a working knowledge of NumPy who wish to explore the productivity gains made possible by Python for HPC.

Instructors:
Dr. Jan Meinke, Jülich Supercomputing Centre
Dr. Olav Zimmermann, Jülich Supercomputing Centre

Jan H. Meinke is a staff scientist at the Jülich Supercomputing Centre (JSC) and a member of the Simulation Laboratory Biology. He received his PhD in Physics in 2002 from Michigan State University and has been working at Forschungszentrum Jülich since 2005. His research interests include protein folding and finding ways to make efficient use of HPC hardware for solving scientific problems. He has been teaching Scientific Python courses since 2011.

Olav Zimmermann is a staff scientist at the Jülich Supercomputing Centre (JSC) and head of the Simulation Laboratory Biology. He received a diploma in experimental molecular genetics and a Ph.D. on a topic in structural bioinformatics from the University of Cologne and was a co-founder and director of the bioinformatics start-up Science Factory. Since 2005 he is at Forschungszentrum Jülich and has been teaching Scientific Python courses since 2011. Olav's main interests are synergies between machine learning and physics-based simulations, efficient analysis algorithms for biological data, and synthetic biology.

Комментарии

Информация по комментариям в разработке

Похожие видео

  • О нас
  • Контакты
  • Отказ от ответственности - Disclaimer
  • Условия использования сайта - TOS
  • Политика конфиденциальности

video2dn Copyright © 2023 - 2025

Контакты для правообладателей [email protected]