Logo video2dn
  • Сохранить видео с ютуба
  • Категории
    • Музыка
    • Кино и Анимация
    • Автомобили
    • Животные
    • Спорт
    • Путешествия
    • Игры
    • Люди и Блоги
    • Юмор
    • Развлечения
    • Новости и Политика
    • Howto и Стиль
    • Diy своими руками
    • Образование
    • Наука и Технологии
    • Некоммерческие Организации
  • О сайте

Скачать или смотреть Evaluating the Robustness of Semantic Segmentation for Autonomous Driving against Real-World Advers

  • ComputerVisionFoundation Videos
  • 2022-11-01
  • 130
Evaluating the Robustness of Semantic Segmentation for Autonomous Driving against Real-World Advers
  • ok logo

Скачать Evaluating the Robustness of Semantic Segmentation for Autonomous Driving against Real-World Advers бесплатно в качестве 4к (2к / 1080p)

У нас вы можете скачать бесплатно Evaluating the Robustness of Semantic Segmentation for Autonomous Driving against Real-World Advers или посмотреть видео с ютуба в максимальном доступном качестве.

Для скачивания выберите вариант из формы ниже:

  • Информация по загрузке:

Cкачать музыку Evaluating the Robustness of Semantic Segmentation for Autonomous Driving against Real-World Advers бесплатно в формате MP3:

Если иконки загрузки не отобразились, ПОЖАЛУЙСТА, НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если у вас возникли трудности с загрузкой, пожалуйста, свяжитесь с нами по контактам, указанным в нижней части страницы.
Спасибо за использование сервиса video2dn.com

Описание к видео Evaluating the Robustness of Semantic Segmentation for Autonomous Driving against Real-World Advers

Authors: Federico Nesti (Scuola Superiore Sant'Anna)*; Giulio Rossolini (Scuola Superiore Sant'Anna); Saasha Nair (Scuola Superiore Sant'Anna); Alessandro Biondi (Scuola Superiore Sant'Anna); Giorgio Buttazzo (Scuola Superiore Sant'Anna) Description: Deep learning and convolutional neural networks allow achieving impressive performance in computer vision tasks, such as object detection and semantic segmentation (SS).
However, recent studies have shown evident weaknesses of such models against adversarial perturbations. In a real-world scenario instead, like autonomous driving, more attention should be devoted to real-world adversarial examples (RWAEs), which are physical objects (e.g., billboards and printable patches) optimized to be adversarial to the entire perception pipeline.
This paper presents an in-depth evaluation of the robustness of popular SS models by testing the effects of both digital and real-world adversarial patches. These patches are crafted with powerful attacks enriched with a novel loss function. Firstly, an investigation on the Cityscapes dataset is conducted by extending the Expectation Over Transformation (EOT) paradigm to cope with SS.
Then, a novel attack optimization, called scene-specific attack, is proposed. Such an attack leverages the CARLA driving simulator to improve the transferability of the proposed EOT-based attack to a real 3D environment.
Finally, a printed physical billboard containing an adversarial patch was tested in an outdoor driving scenario to assess the feasibility of the studied attacks in the real world.
Exhaustive experiments revealed that the proposed attack formulations outperform previous work to craft both digital and real-world adversarial patches for SS. At the same time, the experimental results showed
how these attacks are notably less effective in the real world, hence
questioning the practical relevance of adversarial attacks to SS models for autonomous/assisted driving.

Комментарии

Информация по комментариям в разработке

Похожие видео

  • О нас
  • Контакты
  • Отказ от ответственности - Disclaimer
  • Условия использования сайта - TOS
  • Политика конфиденциальности

video2dn Copyright © 2023 - 2025

Контакты для правообладателей [email protected]