Logo video2dn
  • Сохранить видео с ютуба
  • Категории
    • Музыка
    • Кино и Анимация
    • Автомобили
    • Животные
    • Спорт
    • Путешествия
    • Игры
    • Люди и Блоги
    • Юмор
    • Развлечения
    • Новости и Политика
    • Howto и Стиль
    • Diy своими руками
    • Образование
    • Наука и Технологии
    • Некоммерческие Организации
  • О сайте

Скачать или смотреть Understanding the AttributeError: 'SVC' Object Has No Attribute 'SVC' in Python

  • vlogize
  • 2025-09-18
  • 1
Understanding the AttributeError: 'SVC' Object Has No Attribute 'SVC' in Python
'SVC' object has no attribute 'SVC'python 3.xscikit learn
  • ok logo

Скачать Understanding the AttributeError: 'SVC' Object Has No Attribute 'SVC' in Python бесплатно в качестве 4к (2к / 1080p)

У нас вы можете скачать бесплатно Understanding the AttributeError: 'SVC' Object Has No Attribute 'SVC' in Python или посмотреть видео с ютуба в максимальном доступном качестве.

Для скачивания выберите вариант из формы ниже:

  • Информация по загрузке:

Cкачать музыку Understanding the AttributeError: 'SVC' Object Has No Attribute 'SVC' in Python бесплатно в формате MP3:

Если иконки загрузки не отобразились, ПОЖАЛУЙСТА, НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если у вас возникли трудности с загрузкой, пожалуйста, свяжитесь с нами по контактам, указанным в нижней части страницы.
Спасибо за использование сервиса video2dn.com

Описание к видео Understanding the AttributeError: 'SVC' Object Has No Attribute 'SVC' in Python

Dive into the common Python error related to 'SVC' objects in scikit-learn. Learn how to fix this error and optimize your SVM model using GridSearchCV.
---
This video is based on the question https://stackoverflow.com/q/62346013/ asked by the user 'Christina' ( https://stackoverflow.com/u/13734647/ ) and on the answer https://stackoverflow.com/a/62346054/ provided by the user 'IMB' ( https://stackoverflow.com/u/5857214/ ) at 'Stack Overflow' website. Thanks to these great users and Stackexchange community for their contributions.

Visit these links for original content and any more details, such as alternate solutions, latest updates/developments on topic, comments, revision history etc. For example, the original title of the Question was: 'SVC' object has no attribute 'SVC'

Also, Content (except music) licensed under CC BY-SA https://meta.stackexchange.com/help/l...
The original Question post is licensed under the 'CC BY-SA 4.0' ( https://creativecommons.org/licenses/... ) license, and the original Answer post is licensed under the 'CC BY-SA 4.0' ( https://creativecommons.org/licenses/... ) license.

If anything seems off to you, please feel free to write me at vlogize [AT] gmail [DOT] com.
---
Understanding the AttributeError: 'SVC' Object Has No Attribute 'SVC' in Python

If you're diving into machine learning with Python, especially using the scikit-learn library, you might stumble upon an error akin to AttributeError: 'SVC' object has no attribute 'SVC'. This error can be frustrating, especially when you're trying to experiment with various kernel options for your Support Vector Machine (SVM) model. Let's clarify what causes this error and how you can efficiently resolve it.

The Problem: Overwriting Your Classifier

The root cause of the AttributeError is quite simple: in your loop, you're accidentally overwriting your svm variable. Initially, you assign svm to svm.SVC() which is correct. However, in subsequent iterations, you redefine svm as an instance of an SVC object. Hence, when you try to refer back to svm.SVC() in the next iterations, Python raises the error because svm is no longer a module, but rather an instance of a class.

The Solution: Rename Your Classifier Variable

To fix this issue, you simply need to change the name of your SVM classifier variable. This way, you preserve the reference to the svm module while creating instances of the classifier. Here's how you can modify your code:

[[See Video to Reveal this Text or Code Snippet]]

Key Points to Remember:

Use Different Variable Names: Always ensure that variable names do not overwrite module names when importing libraries.

Maintain Clarity: Using descriptive names like classifier_svm can significantly improve the readability of your code.

Going Further: Optimize with GridSearchCV

If you seek to optimize your SVM model by finding the best kernel and hyperparameters, consider using GridSearchCV. This approach allows for systematic and efficient cross-validation to identify the best configuration. Here's how to implement it:

[[See Video to Reveal this Text or Code Snippet]]

Benefits of Using GridSearchCV:

Comprehensive Evaluation: It evaluates combinations of parameters across multiple folds of cross-validation, ensuring robust results.

Finding Optimal Configurations: Get insights on which combinations of kernels and hyperparameters yield the best accuracy.

Example Output

The classification report will provide a detailed overview of your model's performance, including precision, recall, and F1 scores for each class.

[[See Video to Reveal this Text or Code Snippet]]

Conclusion

The AttributeError: 'SVC' object has no attribute 'SVC' can be easily resolved by keeping your variable names clear and distinct. Additionally, using GridSearchCV will enhance your ability to optimize SVM models efficiently. With these tips and solutions, you can focus on building more robust machine learning models without the hassle of confusing errors.

Feel free to ask further questions if you need more insights on SVM and other machine learning concepts. Happy coding!

Комментарии

Информация по комментариям в разработке

Похожие видео

  • О нас
  • Контакты
  • Отказ от ответственности - Disclaimer
  • Условия использования сайта - TOS
  • Политика конфиденциальности

video2dn Copyright © 2023 - 2025

Контакты для правообладателей [email protected]