Logo video2dn
  • Сохранить видео с ютуба
  • Категории
    • Музыка
    • Кино и Анимация
    • Автомобили
    • Животные
    • Спорт
    • Путешествия
    • Игры
    • Люди и Блоги
    • Юмор
    • Развлечения
    • Новости и Политика
    • Howto и Стиль
    • Diy своими руками
    • Образование
    • Наука и Технологии
    • Некоммерческие Организации
  • О сайте

Скачать или смотреть How to Fix Negative Empirical Variance in Your Python Code Using PyTorch

  • vlogize
  • 2025-04-09
  • 0
How to Fix Negative Empirical Variance in Your Python Code Using PyTorch
Calculated Empirical Variance is negative (python pytorch)pythonpytorchcovariancevariance
  • ok logo

Скачать How to Fix Negative Empirical Variance in Your Python Code Using PyTorch бесплатно в качестве 4к (2к / 1080p)

У нас вы можете скачать бесплатно How to Fix Negative Empirical Variance in Your Python Code Using PyTorch или посмотреть видео с ютуба в максимальном доступном качестве.

Для скачивания выберите вариант из формы ниже:

  • Информация по загрузке:

Cкачать музыку How to Fix Negative Empirical Variance in Your Python Code Using PyTorch бесплатно в формате MP3:

Если иконки загрузки не отобразились, ПОЖАЛУЙСТА, НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если у вас возникли трудности с загрузкой, пожалуйста, свяжитесь с нами по контактам, указанным в нижней части страницы.
Спасибо за использование сервиса video2dn.com

Описание к видео How to Fix Negative Empirical Variance in Your Python Code Using PyTorch

Discover how to troubleshoot and resolve negative empirical variance issues in your Python code using PyTorch. Understand the role of numerical stability and learn effective coding techniques to ensure accurate calculations.
---
This video is based on the question https://stackoverflow.com/q/75605041/ asked by the user 'esh3390' ( https://stackoverflow.com/u/19556890/ ) and on the answer https://stackoverflow.com/a/75610706/ provided by the user 'esh3390' ( https://stackoverflow.com/u/19556890/ ) at 'Stack Overflow' website. Thanks to these great users and Stackexchange community for their contributions.

Visit these links for original content and any more details, such as alternate solutions, latest updates/developments on topic, comments, revision history etc. For example, the original title of the Question was: Calculated Empirical Variance is negative (python, pytorch)

Also, Content (except music) licensed under CC BY-SA https://meta.stackexchange.com/help/l...
The original Question post is licensed under the 'CC BY-SA 4.0' ( https://creativecommons.org/licenses/... ) license, and the original Answer post is licensed under the 'CC BY-SA 4.0' ( https://creativecommons.org/licenses/... ) license.

If anything seems off to you, please feel free to write me at vlogize [AT] gmail [DOT] com.
---
Understanding the Issue of Negative Empirical Variance in PyTorch

When working with data clusters in PyTorch, users may encounter a frustrating issue: the calculated empirical variance can sometimes yield negative values. This is counterintuitive and indicates that something is wrong in the computations. In this post, we'll explore this problem in detail and walk you through a solution that helps ensure accurate variance calculations.

The Problem at Hand

You have a dataset divided into several clusters, and you want to calculate the empirical mean and variance for each cluster. The setup includes:

N: the total number of data points (batch size)

D: the dimensions of each data point

K: the number of clusters

Your data (x) is structured as a tensor of shape (N, D), and each row corresponds to a one-hot encoded vector (enc) of the same shape, where each vector indicates the cluster assignment for the corresponding data point. After setting up your calculations, you find that the computed variance (var_e) sometimes produces negative values, which shouldn't occur based on the statistics.

The Initial Approach

The initial code for calculating the mean and variance looked something like this:

[[See Video to Reveal this Text or Code Snippet]]

Potential Causes of Negative Variance

Division by Zero: When a cluster has very few data points, dividing by n_K could lead to numerical instabilities.

Floating Point Precision Errors: Small numerical errors in floating-point calculations can result in unexpected negative values, especially after performing operations like squaring or subtracting small values.

Improper Denominators: Using a sample variance formula should typically involve dividing by n_K - 1. This was recognized when you updated your code but did not completely resolve the issue.

Revisiting the Code

To address these concerns, the update to the original variance calculation was made by attempting to use n_K - 1 as the denominator:

[[See Video to Reveal this Text or Code Snippet]]

Despite this change, negative values still appeared, prompting a deeper inspection.

The Solution: Adjusting for Numerical Stability

The major breakthrough came from recognizing that the numerical precision may not have been adequately addressed just by using a small epsilon (1e-10). Increasing this epsilon slightly to 1e-6 provided a more stable base for calculations.

Here’s the revised code that resolved the negative variance issue:

[[See Video to Reveal this Text or Code Snippet]]

Key Takeaways

Epsilon Matters: A larger epsilon helps prevent the pitfalls of numerical instability when dealing with very small float values.

Sampling Considerations: When calculating sample variance, always remember to adjust the denominator to n_K - 1.

Validate Your Results: Always check your outputs to ensure they meet the expected criteria; negative variances are a signal to review your calculations.

By following these guidelines and understanding the underlying issues, you can avoid common pitfalls that lead to erroneous calculations in your data clustering tasks in PyTorch. If you keep meticulous attention to numerical stability, your calculations will yield reliable and scientifically valid results.

Комментарии

Информация по комментариям в разработке

Похожие видео

  • О нас
  • Контакты
  • Отказ от ответственности - Disclaimer
  • Условия использования сайта - TOS
  • Политика конфиденциальности

video2dn Copyright © 2023 - 2025

Контакты для правообладателей [email protected]