Logo video2dn
  • Сохранить видео с ютуба
  • Категории
    • Музыка
    • Кино и Анимация
    • Автомобили
    • Животные
    • Спорт
    • Путешествия
    • Игры
    • Люди и Блоги
    • Юмор
    • Развлечения
    • Новости и Политика
    • Howto и Стиль
    • Diy своими руками
    • Образование
    • Наука и Технологии
    • Некоммерческие Организации
  • О сайте

Скачать или смотреть Efficiently Using Queue in Multi-Threading for Prime Number Calculation in Python

  • vlogize
  • 2025-05-28
  • 2
Efficiently Using Queue in Multi-Threading for Prime Number Calculation in Python
Using Queue in Multi-Threading returns address of functionpythonpython 3.xmultithreadingqueuepython multiprocessing
  • ok logo

Скачать Efficiently Using Queue in Multi-Threading for Prime Number Calculation in Python бесплатно в качестве 4к (2к / 1080p)

У нас вы можете скачать бесплатно Efficiently Using Queue in Multi-Threading for Prime Number Calculation in Python или посмотреть видео с ютуба в максимальном доступном качестве.

Для скачивания выберите вариант из формы ниже:

  • Информация по загрузке:

Cкачать музыку Efficiently Using Queue in Multi-Threading for Prime Number Calculation in Python бесплатно в формате MP3:

Если иконки загрузки не отобразились, ПОЖАЛУЙСТА, НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если у вас возникли трудности с загрузкой, пожалуйста, свяжитесь с нами по контактам, указанным в нижней части страницы.
Спасибо за использование сервиса video2dn.com

Описание к видео Efficiently Using Queue in Multi-Threading for Prime Number Calculation in Python

Learn how to effectively use queues in multi-threading with Python to calculate prime numbers across multiple threads and retrieve results accurately.
---
This video is based on the question https://stackoverflow.com/q/65713950/ asked by the user 'Altair21' ( https://stackoverflow.com/u/10669558/ ) and on the answer https://stackoverflow.com/a/65714588/ provided by the user 'Mark Tolonen' ( https://stackoverflow.com/u/235698/ ) at 'Stack Overflow' website. Thanks to these great users and Stackexchange community for their contributions.

Visit these links for original content and any more details, such as alternate solutions, latest updates/developments on topic, comments, revision history etc. For example, the original title of the Question was: Using Queue in Multi-Threading returns address of function

Also, Content (except music) licensed under CC BY-SA https://meta.stackexchange.com/help/l...
The original Question post is licensed under the 'CC BY-SA 4.0' ( https://creativecommons.org/licenses/... ) license, and the original Answer post is licensed under the 'CC BY-SA 4.0' ( https://creativecommons.org/licenses/... ) license.

If anything seems off to you, please feel free to write me at vlogize [AT] gmail [DOT] com.
---
Efficiently Using Queue in Multi-Threading for Prime Number Calculation in Python

In the world of programming, multi-threading offers significant advantages, particularly when it comes to tasks that can benefit from concurrent execution. One popular use case for multi-threading is calculating prime numbers. However, many developers, especially those new to Python, encounter issues when trying to retrieve results from a multi-threaded setup using queues. This guide will tackle a common problem: why does printing the results of a queue return the function addresses instead of the expected values?

We’ll explore the solution step-by-step while providing a clear understanding of how queues and threading work in Python.

The Problem

When attempting to use Python’s threading and queue module to calculate prime numbers concurrently, a user reported that instead of the calculated prime numbers, the addresses of the functions were printed. The initial implementation used lambda functions to add references of task functions to the queue, which led to confusion.

Example Code Snippet

Here's a simplified version of the original attempt:

[[See Video to Reveal this Text or Code Snippet]]

Output Received

Upon running the code, the results displayed were:

[[See Video to Reveal this Text or Code Snippet]]

Clearly, this was not the expected outcome, as the addresses of the functions were printed instead of the arrays of prime numbers.

The Solution

To rectify this issue, it is essential to ensure that the task functions are executed and their results are placed in the queue correctly. Here’s a step-by-step breakdown of the necessary adjustments:

Step 1: Correct Task Functions as Targets

Instead of passing the function references, we should directly set the task functions as the target for the threads.

Step 2: Access the Queue Globally

Since threads can access the same memory space, there’s no need to pass the queue as an argument. We can define the queue globally.

Step 3: Store Results in the Queue

Instead of returning lists from the tasks, store the calculated results directly in the queue using que.put(a).

Step 4: Eliminate Global Variables if Unnecessary

The global n declaration isn’t required unless you plan to reassign n.

Step 5: Use a Lock for Thread Safety

When printing from multiple threads, use a lock to manage the output and prevent mix-ups.

Step 6: Import Necessary Modules

Ensure that all necessary modules—like threading, os, and queue—are imported at the start.

Example Corrected Implementation

Here’s the revised code based on the recommendations above:

[[See Video to Reveal this Text or Code Snippet]]

Expected Output

When you now run the corrected code with an input of 100, you should see an output like this:

[[See Video to Reveal this Text or Code Snippet]]

Conclusion

In conclusion, while utilizing multi-threading in Python, it is pivotal to comprehend how functions are executed and how to properly use queues to collect results. Multi-threading is beneficial for I/O-bound tasks; however, due to the Global Interpreter Lock (GIL), consider using the multiprocessing module for CPU-bound tasks.

By following the outlined steps above, you can efficiently handle prime number calculations and overcome the address-printing issue in multi-threading with queues. Happy coding!

Комментарии

Информация по комментариям в разработке

Похожие видео

  • О нас
  • Контакты
  • Отказ от ответственности - Disclaimer
  • Условия использования сайта - TOS
  • Политика конфиденциальности

video2dn Copyright © 2023 - 2025

Контакты для правообладателей [email protected]