Logo video2dn
  • Сохранить видео с ютуба
  • Категории
    • Музыка
    • Кино и Анимация
    • Автомобили
    • Животные
    • Спорт
    • Путешествия
    • Игры
    • Люди и Блоги
    • Юмор
    • Развлечения
    • Новости и Политика
    • Howto и Стиль
    • Diy своими руками
    • Образование
    • Наука и Технологии
    • Некоммерческие Организации
  • О сайте

Скачать или смотреть PS 6: Unbiased offline recommender evaluation for missing-not-at-random implicit feedback

  • ACM RecSys
  • 2019-04-04
  • 687
PS 6: Unbiased offline recommender evaluation for missing-not-at-random implicit feedback
recsys
  • ok logo

Скачать PS 6: Unbiased offline recommender evaluation for missing-not-at-random implicit feedback бесплатно в качестве 4к (2к / 1080p)

У нас вы можете скачать бесплатно PS 6: Unbiased offline recommender evaluation for missing-not-at-random implicit feedback или посмотреть видео с ютуба в максимальном доступном качестве.

Для скачивания выберите вариант из формы ниже:

  • Информация по загрузке:

Cкачать музыку PS 6: Unbiased offline recommender evaluation for missing-not-at-random implicit feedback бесплатно в формате MP3:

Если иконки загрузки не отобразились, ПОЖАЛУЙСТА, НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если у вас возникли трудности с загрузкой, пожалуйста, свяжитесь с нами по контактам, указанным в нижней части страницы.
Спасибо за использование сервиса video2dn.com

Описание к видео PS 6: Unbiased offline recommender evaluation for missing-not-at-random implicit feedback

Unbiased offline recommender evaluation for missing-not-at-random implicit feedback
Longqi Yang, Yin Cui, Yuan Xuan, Chenyang Wang, Serge Belongie, Deborah Estrin
10.1145/3240323.3240355
Implicit-feedback Recommenders (ImplicitRec) leverage positive only user-item interactions, such as clicks, to learn personalized user preferences. Recommenders are often evaluated and compared offline using datasets collected from online platforms. These platforms are subject to popularity bias (i.e., popular items are more likely to be presented and interacted with), and therefore logged ground truth data are Missing-Not-At-Random (MNAR). As a result, the widely used Average-Over-All (AOA) evaluator is biased toward accurately recommending trendy items. In this paper, we (a) investigate evaluation bias of AOA and (b) develop an unbiased and practical offline evaluator for implicit MNAR datasets using the Inverse-Propensity-Scoring (IPS) technique. Through extensive experiments using four real-world datasets and four widely used algorithms, we show that (a) popularity bias is widely manifested in item presentation and interaction; (b) evaluation bias due to MNAR data pervasively exists in most cases where AOA is used to evaluate ImplicitRec; and (c) the unbiased estimator significantly reduces the AOA evaluation bias by more than 30% in the Yahoo! music dataset in terms of the Mean Absolute Error (MAE).

Комментарии

Информация по комментариям в разработке

Похожие видео

  • О нас
  • Контакты
  • Отказ от ответственности - Disclaimer
  • Условия использования сайта - TOS
  • Политика конфиденциальности

video2dn Copyright © 2023 - 2025

Контакты для правообладателей [email protected]