Logo video2dn
  • Сохранить видео с ютуба
  • Категории
    • Музыка
    • Кино и Анимация
    • Автомобили
    • Животные
    • Спорт
    • Путешествия
    • Игры
    • Люди и Блоги
    • Юмор
    • Развлечения
    • Новости и Политика
    • Howto и Стиль
    • Diy своими руками
    • Образование
    • Наука и Технологии
    • Некоммерческие Организации
  • О сайте

Скачать или смотреть All languages are regular?! Spot the Proof Error(s)!

  • Easy Theory
  • 2020-04-09
  • 1884
All languages are regular?! Spot the Proof Error(s)!
regular languageregular language proofproof exampleregular language proof exampledfa proof examplepumping lemma proof examplefaulty proofdfaproof failall languages are regularregular languagestheory of computationregular language exampleseasy theorypumping lemmapumping lemma examplepumping lemma for regular languages
  • ok logo

Скачать All languages are regular?! Spot the Proof Error(s)! бесплатно в качестве 4к (2к / 1080p)

У нас вы можете скачать бесплатно All languages are regular?! Spot the Proof Error(s)! или посмотреть видео с ютуба в максимальном доступном качестве.

Для скачивания выберите вариант из формы ниже:

  • Информация по загрузке:

Cкачать музыку All languages are regular?! Spot the Proof Error(s)! бесплатно в формате MP3:

Если иконки загрузки не отобразились, ПОЖАЛУЙСТА, НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если у вас возникли трудности с загрузкой, пожалуйста, свяжитесь с нами по контактам, указанным в нижней части страницы.
Спасибо за использование сервиса video2dn.com

Описание к видео All languages are regular?! Spot the Proof Error(s)!

Here we give a (faulty) proof that all languages are regular. We use the basic notions and concepts related to regular languages to give a "proof" of this fact. Can you spot the error(s)?

Patreon:   / easytheory  
Facebook:   / easytheory  
Twitter:   / easytheory  

If you like this content, please consider subscribing to my channel:    / @easytheory  

▶ADDITIONAL QUESTIONS◀
1. Can you prove something about the resulting NFA/DFA if you were to construct this using the product construction directly?

▶SEND ME THEORY QUESTIONS◀
[email protected]

▶ABOUT ME◀
I am a professor of Computer Science, and am passionate about CS theory. I have taught over 12 courses at Arizona State University, as well as Colgate University, including several sections of undergraduate theory.

▶ABOUT THIS CHANNEL◀
The theory of computation is perhaps the fundamental
theory of computer science. It sets out to define, mathematically, what
exactly computation is, what is feasible to solve using a computer,
and also what is not possible to solve using a computer.
The main objective is to define a computer mathematically, without the
reliance on real-world computers, hardware or software, or the plethora
of programming languages we have in use today. The notion of a Turing
machine serves this purpose and defines what we believe is the crux of
all computable functions.

This channel is also about weaker forms of computation, concentrating on
two classes: regular languages and context-free languages. These two
models help understand what we can do with restricted
means of computation, and offer a rich theory using which you can
hone your mathematical skills in reasoning with simple machines and
the languages they define.

However, they are not simply there as a weak form of computation--the most attractive aspect of them is that problems formulated on them
are tractable, i.e. we can build efficient algorithms to reason
with objects such as finite automata, context-free grammars and
pushdown automata. For example, we can model a piece of hardware (a circuit)
as a finite-state system and solve whether the circuit satisfies a property
(like whether it performs addition of 16-bit registers correctly).
We can model the syntax of a programming language using a grammar, and
build algorithms that check if a string parses according to this grammar.

On the other hand, most problems that ask properties about Turing machines
are undecidable.
This Youtube channel will help you see and prove that several tasks involving Turing machines are unsolvable---i.e., no computer, no software, can solve it. For example,
you will see that there is no software that can check whether a
C program will halt on a particular input. To prove something is possible is, of course, challenging.
But to show something is impossible is rare in computer
science, and very humbling.

Комментарии

Информация по комментариям в разработке

Похожие видео

  • О нас
  • Контакты
  • Отказ от ответственности - Disclaimer
  • Условия использования сайта - TOS
  • Политика конфиденциальности

video2dn Copyright © 2023 - 2025

Контакты для правообладателей [email protected]