🔵33 - Solving Initial Value Problems using Laplace Transforms method

Описание к видео 🔵33 - Solving Initial Value Problems using Laplace Transforms method

In this lesson we are going to learn how to solve initial value problems using laplace transforms.

Given a differential equation and asked to find the general solution to that d.e, you first take the laplace transforms of both sides of the d.e and
find the inverse transform of the resulting complex rational function.

The method of partial fractions helps us to decompose a complex rational function into the sum of simple rational functions.

We shall consider three cases: Rational functions with
1. Non-repeated Linear Factors
2. Repeated Linear Factors
3. Quadratic Factors

If F(s) = L(f(t)), then f(t) = inverse L(f(t)).
The inverse Laplace Transforms is used to obtain an inverse mapping of a given Laplace Transform F(s).


Playlists on various Course
1. Applied Electricity
   • APPLIED ELECTRICITY  

2. Linear Algebra / Math 151
   • LINEAR ALGEBRA  

3. Basic Mechanics
   • BASIC MECHANICS / STATICS  

4. Calculus with Analysis / Calculus 1 / Math 152
   • CALCULUS WITH ANALYSIS / CALCULUS 1 /...  

5. Differential Equations / Math 251
   • DIFFERENTIAL EQUATIONS  

6. Electric Circuit Theory / Circuit Design
   • ELECTRIC CIRCUIT THEORY / CIRCUIT DESIGN  

Make sure to watch till the end.
Like, share, and subscribe.
Thank you.

Комментарии

Информация по комментариям в разработке