Logo video2dn
  • Сохранить видео с ютуба
  • Категории
    • Музыка
    • Кино и Анимация
    • Автомобили
    • Животные
    • Спорт
    • Путешествия
    • Игры
    • Люди и Блоги
    • Юмор
    • Развлечения
    • Новости и Политика
    • Howto и Стиль
    • Diy своими руками
    • Образование
    • Наука и Технологии
    • Некоммерческие Организации
  • О сайте

Скачать или смотреть Streamline Your AWS Lambda Function with ONNX Models in Layers

  • vlogize
  • 2025-08-22
  • 1
Streamline Your AWS Lambda Function with ONNX Models in Layers
  • ok logo

Скачать Streamline Your AWS Lambda Function with ONNX Models in Layers бесплатно в качестве 4к (2к / 1080p)

У нас вы можете скачать бесплатно Streamline Your AWS Lambda Function with ONNX Models in Layers или посмотреть видео с ютуба в максимальном доступном качестве.

Для скачивания выберите вариант из формы ниже:

  • Информация по загрузке:

Cкачать музыку Streamline Your AWS Lambda Function with ONNX Models in Layers бесплатно в формате MP3:

Если иконки загрузки не отобразились, ПОЖАЛУЙСТА, НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если у вас возникли трудности с загрузкой, пожалуйста, свяжитесь с нами по контактам, указанным в нижней части страницы.
Спасибо за использование сервиса video2dn.com

Описание к видео Streamline Your AWS Lambda Function with ONNX Models in Layers

Learn how to efficiently use AWS Lambda layers to store your `ONNX models`, reducing latency and improving performance in your serverless applications.
---
This video is based on the question https://stackoverflow.com/q/64114454/ asked by the user 'Shawn Zhang' ( https://stackoverflow.com/u/6491230/ ) and on the answer https://stackoverflow.com/a/64114676/ provided by the user 'Marcin' ( https://stackoverflow.com/u/248823/ ) at 'Stack Overflow' website. Thanks to these great users and Stackexchange community for their contributions.

Visit these links for original content and any more details, such as alternate solutions, latest updates/developments on topic, comments, revision history etc. For example, the original title of the Question was: AWS Lambda - How to Put ONNX Models in AWS Layers

Also, Content (except music) licensed under CC BY-SA https://meta.stackexchange.com/help/l...
The original Question post is licensed under the 'CC BY-SA 4.0' ( https://creativecommons.org/licenses/... ) license, and the original Answer post is licensed under the 'CC BY-SA 4.0' ( https://creativecommons.org/licenses/... ) license.

If anything seems off to you, please feel free to write me at vlogize [AT] gmail [DOT] com.
---
Streamline Your AWS Lambda Function with ONNX Models in Layers

AWS Lambda is a powerful serverless computing service that lets you run your code without provisioning or managing servers. However, one common challenge developers face is efficiently managing model files, particularly in scenarios involving machine learning models like those defined in ONNX (Open Neural Network Exchange) format. This post will guide you through how to put your ONNX models in AWS Lambda layers, reducing the latency typically associated with downloading models from S3 during the function execution.

The Challenge: Downloading ONNX Models from S3

When executing your AWS Lambda function, you may be using code similar to the following to download your ONNX models from Amazon S3:

[[See Video to Reveal this Text or Code Snippet]]

While this approach works, it can introduce latency due to the need to download the model every time the function executes. This latency can become an issue, especially in performance-sensitive applications.

The Solution: Store ONNX Models in AWS Lambda Layers

To minimize latency, you can store your ONNX model directly in AWS Lambda layers. This method will allow your function to access the model instantly, improving performance.

Step-by-Step Guide to Using AWS Lambda Layers

Here’s how to properly set up your ONNX model in AWS Lambda layers:

Create a ZIP File: Ensure that your ONNX model is structured correctly in a ZIP file. The contents of your ZIP file should look like this:

[[See Video to Reveal this Text or Code Snippet]]

Alternatively, if you do not want it to be nested under the python folder, you can simply have model.onnx directly in the root of the ZIP file.

Upload the Layer: Use the AWS Management Console or AWS CLI to create and upload your Lambda layer with the ZIP file you just created.

Modify Your Lambda Function: Update your Lambda function code to point to the correct path of the ONNX model. If your model is located in the python directory within the layer, your code should look like this:

[[See Video to Reveal this Text or Code Snippet]]

If you chose to place your model directly in the root of the ZIP file, then your code will simply look like this:

[[See Video to Reveal this Text or Code Snippet]]

Common Issues and Troubleshooting

File Not Found Error (File doesn't exist): If you encounter a file not found error, double-check the structure of your ZIP file. Ensure that your ONNX model is located in the correct directory expected by your code.

Layer Configuration: Make sure your Lambda function’s execution role has the necessary permissions to access the layer you created.

Conclusion

Storing your ONNX models in AWS Lambda layers can significantly enhance performance by reducing latency associated with model downloads. By following the steps outlined above, you can easily integrate your machine learning models in your serverless applications. This change not only streamlines your code but also enhances the user experience by improving response times.

By utilizing AWS Lambda layers effectively, you can focus on building and deploying efficient, scalable serverless applications without the burden of managing model files in S3.

If you have further questions or need assistance, feel free to reach out or leave a comment below!

Комментарии

Информация по комментариям в разработке

Похожие видео

  • The UN Still Matters
    The UN Still Matters
    12 дней назад
  • О нас
  • Контакты
  • Отказ от ответственности - Disclaimer
  • Условия использования сайта - TOS
  • Политика конфиденциальности

video2dn Copyright © 2023 - 2025

Контакты для правообладателей [email protected]