Logo video2dn
  • Сохранить видео с ютуба
  • Категории
    • Музыка
    • Кино и Анимация
    • Автомобили
    • Животные
    • Спорт
    • Путешествия
    • Игры
    • Люди и Блоги
    • Юмор
    • Развлечения
    • Новости и Политика
    • Howto и Стиль
    • Diy своими руками
    • Образование
    • Наука и Технологии
    • Некоммерческие Организации
  • О сайте

Скачать или смотреть Application and Challenges of Streaming Analytics and Machine Learning on Multi Variate Time Series

  • Databricks
  • 2019-10-21
  • 481
Application and Challenges of Streaming Analytics and Machine Learning on Multi Variate Time Series
#SparkAISummit
  • ok logo

Скачать Application and Challenges of Streaming Analytics and Machine Learning on Multi Variate Time Series бесплатно в качестве 4к (2к / 1080p)

У нас вы можете скачать бесплатно Application and Challenges of Streaming Analytics and Machine Learning on Multi Variate Time Series или посмотреть видео с ютуба в максимальном доступном качестве.

Для скачивания выберите вариант из формы ниже:

  • Информация по загрузке:

Cкачать музыку Application and Challenges of Streaming Analytics and Machine Learning on Multi Variate Time Series бесплатно в формате MP3:

Если иконки загрузки не отобразились, ПОЖАЛУЙСТА, НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если у вас возникли трудности с загрузкой, пожалуйста, свяжитесь с нами по контактам, указанным в нижней части страницы.
Спасибо за использование сервиса video2dn.com

Описание к видео Application and Challenges of Streaming Analytics and Machine Learning on Multi Variate Time Series

Manufacturing Industries create value by transforming raw materials into products. Many of these processes are automated with sensors and control systems which, along with manufacturing execution systems (MES), generate large volumes of data. The key objective of smart manufacturing is to harness these data to enable data driven, predictive operations to optimize the process for higher throughput, quality and energy efficiency. The complex nature of manufacturing systems poses unique challenges in building a robust data pipeline. Data needs to be collected from multiple sources at different granularities. It must be prepared and enriched to make it ML ready and for processing of 1000s of deployed ML models at the edge or cloud. To make machine learning useful, it must also be blended with complex event processing (CEP). The talk will describe the challenges of multivariate time-series data in Smart Manufacturing context, our approaches to dealing with these challenges, and our learnings. In this talk, we share some of the challenges faced in building a streaming analytics & ML pipeline. More specifically, we discuss handling time series data with different granularities and arrival order. Data spikes are also not uncommon and can pose a serious challenge to the operating SLAs of such a system. We present in detail our streaming data pipeline, which includes production deployments of ML models and CEP on edge and cloud. Using Spark, Kafka and the ecosystem around it, our team has created a platform capable of monitoring thousands of manufacturing equipment assets with millions of data points, in near real time.

About: Databricks provides a unified data analytics platform, powered by Apache Spark™, that accelerates innovation by unifying data science, engineering and business.
Read more here: https://databricks.com/product/unifie...

Connect with us:
Website: https://databricks.com
Facebook:   / databricksinc  
Twitter:   / databricks  
LinkedIn:   / databricks  
Instagram:   / databricksinc   Databricks is proud to announce that Gartner has named us a Leader in both the 2021 Magic Quadrant for Cloud Database Management Systems and the 2021 Magic Quadrant for Data Science and Machine Learning Platforms. Download the reports here. https://databricks.com/databricks-nam...

Комментарии

Информация по комментариям в разработке

Похожие видео

  • О нас
  • Контакты
  • Отказ от ответственности - Disclaimer
  • Условия использования сайта - TOS
  • Политика конфиденциальности

video2dn Copyright © 2023 - 2025

Контакты для правообладателей [email protected]