Logo video2dn
  • Сохранить видео с ютуба
  • Категории
    • Музыка
    • Кино и Анимация
    • Автомобили
    • Животные
    • Спорт
    • Путешествия
    • Игры
    • Люди и Блоги
    • Юмор
    • Развлечения
    • Новости и Политика
    • Howto и Стиль
    • Diy своими руками
    • Образование
    • Наука и Технологии
    • Некоммерческие Организации
  • О сайте

Скачать или смотреть Oscillations L10 Physical Compound Pendulum, Torsional Pendulum & Intro to Rolling SHM

  • CBSE & JEE Physics | Dr Kedar Pathak
  • 2026-01-06
  • 1
Oscillations L10 Physical Compound Pendulum, Torsional Pendulum & Intro to Rolling SHM
oscillations l10physical pendulumcompound pendulumtime period of physical pendulumequivalent length of compound pendulumminimum time period physical pendulumtorsional pendulumtorsion constantdisc on torsion wirerolling shmcylinder attached to springshm with rotation and rollingangular shmclass 11 physics oscillationsjee shm rigid bodydr kedar pathak physics
  • ok logo

Скачать Oscillations L10 Physical Compound Pendulum, Torsional Pendulum & Intro to Rolling SHM бесплатно в качестве 4к (2к / 1080p)

У нас вы можете скачать бесплатно Oscillations L10 Physical Compound Pendulum, Torsional Pendulum & Intro to Rolling SHM или посмотреть видео с ютуба в максимальном доступном качестве.

Для скачивания выберите вариант из формы ниже:

  • Информация по загрузке:

Cкачать музыку Oscillations L10 Physical Compound Pendulum, Torsional Pendulum & Intro to Rolling SHM бесплатно в формате MP3:

Если иконки загрузки не отобразились, ПОЖАЛУЙСТА, НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если у вас возникли трудности с загрузкой, пожалуйста, свяжитесь с нами по контактам, указанным в нижней части страницы.
Спасибо за использование сервиса video2dn.com

Описание к видео Oscillations L10 Physical Compound Pendulum, Torsional Pendulum & Intro to Rolling SHM

In Oscillations Lecture 10, we give a compact introduction to three important angular SHM systems:

Physical (compound) pendulum – any rigid body oscillating about a horizontal axis.
Torsional pendulum – body suspended by a twisting wire.
Rolling SHM – a solid cylinder attached to a spring and rolling without slipping.
The aim is to show how the same SHM pattern appears again and again:

Restoring torque proportional to angle,
Angular acceleration alpha = minus omega squared theta,
Time period T = 2 pi by omega.
1. Physical (Compound) Pendulum
Definition: Any rigid body suspended from a fixed horizontal axis and allowed to oscillate in a vertical plane.

Distance from pivot to centre of mass = L (small L)
Mass = m
Moment of inertia about pivot = I (capital I)
For small angular displacement theta:

Gravitational torque:
tau = minus m g L sin theta approximately equal to minus m g L times theta.

Rotational equation:
I d2theta by dt2 = tau.

So:

d2theta by dt2 = minus (m g L divided by I) theta
Hence
omega = square root of (m g L divided by I)
T = 2 pi square root of (I divided by m g L)
Using the parallel axis theorem:

I = I cm plus m L squared, with I cm = m k squared (k = radius of gyration about CM)
We get:

T = 2 pi square root of (k squared plus L squared divided by L g)
Define equivalent length of a simple pendulum:

L eq = k squared divided by L plus L
So T = 2 pi square root of (L eq divided by g)
Minimum period occurs when L equals k:

T min = 2 pi square root of (2 k divided by g)
Example (metre stick):

Uniform rod length 1 m, pivot at 75 cm mark.
Distance CM to pivot d = 0.25 m
I cm = m L rod squared by 12
I about pivot = I cm + m d squared
Use T = 2 pi square root of (I divided by m g d).
2. Torsional Pendulum
Rigid body suspended by a wire. When twisted by angle theta:

Restoring torque:
tau = minus k theta (k = torsion constant of wire)
Rotational equation:

I d2theta by dt2 = minus k theta
So d2theta by dt2 = minus (k divided by I) theta
Hence:

omega = square root of (k divided by I)
T = 2 pi square root of (I divided by k)
No small angle restriction is needed as long as the wire remains within its elastic limit.

Example (disc on wire):

Uniform disc: m = 0.200 kg, r = 0.050 m
I = m r squared by 2 = 2.5 times 10 power minus 4 kg m squared
Given T = 0.20 s
From T = 2 pi square root of (I divided by k):
k = 4 pi squared I by T squared approximately 0.25 kg m squared per s squared.
3. Rolling SHM: Solid Cylinder Attached to a Spring
Solid cylinder: mass m, radius R
Spring constant k, horizontal surface, rolling without slipping
Small rotation theta:

Centre displacement x = R theta
Spring extension x = R theta
Spring force F s = k x = k R theta (towards mean)
Equations used (not fully derived in detail):

Translation: F s minus friction f = m a
Rotation about CM: f R = I cm alpha
Rolling without slipping: a = R alpha
For solid cylinder: I cm = (1 by 2) m R squared
From these:

alpha = minus (2 k divided by 3 m) theta
So omega = square root of (2 k divided by 3 m)
Time period:
T = 2 pi square root of (3 m divided by 2 k)
This shows how combined translation plus rotation can still give simple harmonic motion.

Key Takeaways
Physical pendulum:
T = 2 pi square root of (I divided by m g L),
with I = I cm + m L squared and equivalent length L eq = k squared divided by L plus L.

Torsional pendulum:
tau = minus k theta,
T = 2 pi square root of (I divided by k).

Rolling SHM (solid cylinder plus spring, pure rolling):
T = 2 pi square root of (3 m divided by 2 k).

In all these cases, the SHM form comes from:

Restoring torque proportional to angular displacement,
Angular SHM equation d2theta by dt2 plus omega squared theta equals zero.

Комментарии

Информация по комментариям в разработке

Похожие видео

  • О нас
  • Контакты
  • Отказ от ответственности - Disclaimer
  • Условия использования сайта - TOS
  • Политика конфиденциальности

video2dn Copyright © 2023 - 2025

Контакты для правообладателей [email protected]