Logo video2dn
  • Сохранить видео с ютуба
  • Категории
    • Музыка
    • Кино и Анимация
    • Автомобили
    • Животные
    • Спорт
    • Путешествия
    • Игры
    • Люди и Блоги
    • Юмор
    • Развлечения
    • Новости и Политика
    • Howto и Стиль
    • Diy своими руками
    • Образование
    • Наука и Технологии
    • Некоммерческие Организации
  • О сайте

Скачать или смотреть How to Split Pandas Dataframe for Time Series Analysis

  • vlogize
  • 2025-09-29
  • 1
How to Split Pandas Dataframe for Time Series Analysis
Split Pandas Dataframe For Time Seriespythonpandasdataframetime series
  • ok logo

Скачать How to Split Pandas Dataframe for Time Series Analysis бесплатно в качестве 4к (2к / 1080p)

У нас вы можете скачать бесплатно How to Split Pandas Dataframe for Time Series Analysis или посмотреть видео с ютуба в максимальном доступном качестве.

Для скачивания выберите вариант из формы ниже:

  • Информация по загрузке:

Cкачать музыку How to Split Pandas Dataframe for Time Series Analysis бесплатно в формате MP3:

Если иконки загрузки не отобразились, ПОЖАЛУЙСТА, НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если у вас возникли трудности с загрузкой, пожалуйста, свяжитесь с нами по контактам, указанным в нижней части страницы.
Спасибо за использование сервиса video2dn.com

Описание к видео How to Split Pandas Dataframe for Time Series Analysis

Learn how to efficiently split large Pandas Dataframes for time series training and testing using best practices.
---
This video is based on the question https://stackoverflow.com/q/63697746/ asked by the user 'Sathvik Chinta' ( https://stackoverflow.com/u/14005300/ ) and on the answer https://stackoverflow.com/a/63697857/ provided by the user 'Parfait' ( https://stackoverflow.com/u/1422451/ ) at 'Stack Overflow' website. Thanks to these great users and Stackexchange community for their contributions.

Visit these links for original content and any more details, such as alternate solutions, latest updates/developments on topic, comments, revision history etc. For example, the original title of the Question was: Split Pandas Dataframe For Time Series

Also, Content (except music) licensed under CC BY-SA https://meta.stackexchange.com/help/l...
The original Question post is licensed under the 'CC BY-SA 4.0' ( https://creativecommons.org/licenses/... ) license, and the original Answer post is licensed under the 'CC BY-SA 4.0' ( https://creativecommons.org/licenses/... ) license.

If anything seems off to you, please feel free to write me at vlogize [AT] gmail [DOT] com.
---
How to Split Pandas Dataframe for Time Series Analysis

If you're working with time series data in Python, you know how crucial it is to properly split your dataset into training and testing sets. This is especially important when you are dealing with a large dataset, like a CSV file containing over 200,000 rows, which can include many unique items and various attributes. In this post, we’ll dive into how to effectively split a Pandas DataFrame for time series analysis by explaining a common approach and providing an optimized solution.

The Problem Explained

You may find yourself in a scenario where you need to train a model on historical data (the first 80%) and test it on future data (the last 20%). The challenge lies in how to correctly partition your DataFrame based on time, ensuring that each unique item within your dataset is handled separately.

Original Attempt

The initial approach follows this flow:

[[See Video to Reveal this Text or Code Snippet]]

While the logic for extracting trainvals and testvals appears to be correct, the problem arises with how you're trying to append these DataFrames to train and test. The immediate issue is that instead of re-assigning, you're not adding the values correctly.

A More Efficient Solution

To overcome the limitations of your initial code, particularly the issue of memory inefficiency arising from appending DataFrames in a loop, we can adopt a more organized approach using the groupby method and list comprehension. Here’s how you can implement it:

Step-by-Step Breakdown

Sorting the Data: First, ensure your DataFrame is sorted by the 'Date' column.

Splitting the DataFrame: Define a function that takes a DataFrame and splits it into training and testing parts.

Using groupby and pd.concat:

Use groupby to iterate through each unique item.

Apply the split function.

Concatenate all results once processing is complete.

The Optimized Code

Here’s how you can implement these steps in code:

[[See Video to Reveal this Text or Code Snippet]]

Why This Method Works

Memory-Efficient: Instead of expanding the DataFrame iteratively, the solution accumulates results in memory-efficient manners, making use of Python’s built-in capabilities.

Readability: Organized functions make the code easier to read and maintain.

Scalability: This method scales better when dealing with larger datasets.

Conclusion

Correctly splitting your Pandas DataFrame for time series analysis is essential, especially with large datasets. By transitioning from the initial approach to utilizing groupby, sorting, and leveraging the efficient pd.concat, you're not only improving the efficiency of your code but also ensuring a clean and maintainable approach to handling time series data.

Do give this method a try in your own projects, and feel free to modify it to better suit your specific needs!

Комментарии

Информация по комментариям в разработке

Похожие видео

  • О нас
  • Контакты
  • Отказ от ответственности - Disclaimer
  • Условия использования сайта - TOS
  • Политика конфиденциальности

video2dn Copyright © 2023 - 2025

Контакты для правообладателей [email protected]