Logo video2dn
  • Сохранить видео с ютуба
  • Категории
    • Музыка
    • Кино и Анимация
    • Автомобили
    • Животные
    • Спорт
    • Путешествия
    • Игры
    • Люди и Блоги
    • Юмор
    • Развлечения
    • Новости и Политика
    • Howto и Стиль
    • Diy своими руками
    • Образование
    • Наука и Технологии
    • Некоммерческие Организации
  • О сайте

Скачать или смотреть How to Remove Rows Based on Another Dataframe in Pandas

  • vlogize
  • 2025-09-18
  • 0
How to Remove Rows Based on Another Dataframe in Pandas
How to remove rows based on another Dataframe?pythonpandasnumpy
  • ok logo

Скачать How to Remove Rows Based on Another Dataframe in Pandas бесплатно в качестве 4к (2к / 1080p)

У нас вы можете скачать бесплатно How to Remove Rows Based on Another Dataframe in Pandas или посмотреть видео с ютуба в максимальном доступном качестве.

Для скачивания выберите вариант из формы ниже:

  • Информация по загрузке:

Cкачать музыку How to Remove Rows Based on Another Dataframe in Pandas бесплатно в формате MP3:

Если иконки загрузки не отобразились, ПОЖАЛУЙСТА, НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если у вас возникли трудности с загрузкой, пожалуйста, свяжитесь с нами по контактам, указанным в нижней части страницы.
Спасибо за использование сервиса video2dn.com

Описание к видео How to Remove Rows Based on Another Dataframe in Pandas

Learn how to efficiently filter out rows in Pandas DataFrame based on another DataFrame. This guide provides a step-by-step solution to remove inactive LOBs while maintaining active records.
---
This video is based on the question https://stackoverflow.com/q/62326983/ asked by the user 'Harsha' ( https://stackoverflow.com/u/7987118/ ) and on the answer https://stackoverflow.com/a/62327121/ provided by the user 'Umar.H' ( https://stackoverflow.com/u/9375102/ ) at 'Stack Overflow' website. Thanks to these great users and Stackexchange community for their contributions.

Visit these links for original content and any more details, such as alternate solutions, latest updates/developments on topic, comments, revision history etc. For example, the original title of the Question was: How to remove rows based on another Dataframe?

Also, Content (except music) licensed under CC BY-SA https://meta.stackexchange.com/help/l...
The original Question post is licensed under the 'CC BY-SA 4.0' ( https://creativecommons.org/licenses/... ) license, and the original Answer post is licensed under the 'CC BY-SA 4.0' ( https://creativecommons.org/licenses/... ) license.

If anything seems off to you, please feel free to write me at vlogize [AT] gmail [DOT] com.
---
How to Remove Rows Based on Another Dataframe in Pandas

When working with large datasets, you often face the challenge of filtering out unwanted or irrelevant data. A common scenario involves removing rows in one DataFrame based on the values of another DataFrame. In this guide, we will explore how to effectively remove inactive lines of business (LOBs) from a DataFrame using the pandas library in Python.

Understanding the Problem

Let's consider the example from our scenario:

We have DataFrame A (DF A) that contains records of various LOBs along with their respective states.

We also have DataFrame B (DF B) which lists inactive LOBs associated with different states.

Our goal is to create a new DataFrame (let's call it DataFrame C (DF C)) that only includes active LOBs. It's important to note that the same LOB can be both active and inactive depending on the state. For instance, LOB 78 is inactive in Ohio (OH) but might be active in Michigan (MI). Thus, we need a robust method to filter out the inactive entries without losing active records.

Solution: Using Pandas to Filter DataFrames

We can accomplish this task using the merge function alongside some operations to manipulate the DataFrame. Here’s a detailed step-by-step approach to achieving the desired output.

Step 1: Prepare Your DataFrames

For our example, you would start with two DataFrames created from the sample data:

DataFrame A (DF A)

[[See Video to Reveal this Text or Code Snippet]]

DataFrame B (DF B)

[[See Video to Reveal this Text or Code Snippet]]

Step 2: Melt DataFrame B

To facilitate the merging process, we need to reshape DF B using the melt function. This will convert the DataFrame from wide to long format, allowing us to match states with their corresponding inactive LOBs:

[[See Video to Reveal this Text or Code Snippet]]

Step 3: Perform a Left Join and Filter

Next, we will perform a left merge between DF A and the melted DF B. The merge will include an indicator to identify which entries from DF A match with DF B (inactive records). Following the merge, we will filter out the entries that are marked as inactive (i.e., where the _merge indicator is "both").

[[See Video to Reveal this Text or Code Snippet]]

Step 4: Check the Result

Finally, we can print and verify the resulting DataFrame C to ensure it contains only the active LOB records based on the conditions specified:

[[See Video to Reveal this Text or Code Snippet]]

The resulting DataFrame C (DF C) will appear as follows:

[[See Video to Reveal this Text or Code Snippet]]

Conclusion

By following these steps, you can effectively filter rows in a DataFrame based on the values present in another DataFrame. The approach demonstrated here is both efficient and scalable, enabling you to handle large datasets without a hitch. Whether you're maintaining LOB records or processing other forms of data, mastering these techniques can significantly streamline your data management tasks in Pandas.

If you have any questions or need further assistance, feel free to reach out in the comments below!

Комментарии

Информация по комментариям в разработке

Похожие видео

  • О нас
  • Контакты
  • Отказ от ответственности - Disclaimer
  • Условия использования сайта - TOS
  • Политика конфиденциальности

video2dn Copyright © 2023 - 2025

Контакты для правообладателей [email protected]