Logo video2dn
  • Сохранить видео с ютуба
  • Категории
    • Музыка
    • Кино и Анимация
    • Автомобили
    • Животные
    • Спорт
    • Путешествия
    • Игры
    • Люди и Блоги
    • Юмор
    • Развлечения
    • Новости и Политика
    • Howto и Стиль
    • Diy своими руками
    • Образование
    • Наука и Технологии
    • Некоммерческие Организации
  • О сайте

Скачать или смотреть Efficient Calculation of timedeltas in Python for Arrival and Departure Data

  • vlogize
  • 2025-09-05
  • 4
Efficient Calculation of timedeltas in Python for Arrival and Departure Data
Efficient calculation of timedeltas between two series where different cases can occurpythonpandasdataframedatetimetimedelta
  • ok logo

Скачать Efficient Calculation of timedeltas in Python for Arrival and Departure Data бесплатно в качестве 4к (2к / 1080p)

У нас вы можете скачать бесплатно Efficient Calculation of timedeltas in Python for Arrival and Departure Data или посмотреть видео с ютуба в максимальном доступном качестве.

Для скачивания выберите вариант из формы ниже:

  • Информация по загрузке:

Cкачать музыку Efficient Calculation of timedeltas in Python for Arrival and Departure Data бесплатно в формате MP3:

Если иконки загрузки не отобразились, ПОЖАЛУЙСТА, НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если у вас возникли трудности с загрузкой, пожалуйста, свяжитесь с нами по контактам, указанным в нижней части страницы.
Спасибо за использование сервиса video2dn.com

Описание к видео Efficient Calculation of timedeltas in Python for Arrival and Departure Data

Discover efficient techniques to calculate `timedeltas` between scheduled and actual departures in large datasets using Python and Pandas, accommodating various scenarios and edge cases.
---
This video is based on the question https://stackoverflow.com/q/64979970/ asked by the user 'ECF' ( https://stackoverflow.com/u/9069554/ ) and on the answer https://stackoverflow.com/a/64989574/ provided by the user 'FObersteiner' ( https://stackoverflow.com/u/10197418/ ) at 'Stack Overflow' website. Thanks to these great users and Stackexchange community for their contributions.

Visit these links for original content and any more details, such as alternate solutions, latest updates/developments on topic, comments, revision history etc. For example, the original title of the Question was: Efficient calculation of timedeltas between two series where different cases can occur

Also, Content (except music) licensed under CC BY-SA https://meta.stackexchange.com/help/l...
The original Question post is licensed under the 'CC BY-SA 4.0' ( https://creativecommons.org/licenses/... ) license, and the original Answer post is licensed under the 'CC BY-SA 4.0' ( https://creativecommons.org/licenses/... ) license.

If anything seems off to you, please feel free to write me at vlogize [AT] gmail [DOT] com.
---
Efficient Calculation of timedeltas in Python for Arrival and Departure Data

When working with large datasets, especially those containing date and time information such as arrival and departure data, calculating time differences can present certain challenges. In this post, we will explore a systematic approach to efficiently calculate timedeltas using Python and Pandas, while addressing four different cases that may arise in real-world datasets.

The Challenge

In a dataset with approximately 1 million rows, you might encounter a situation like this: you have scheduled and actual departure times, but the actual departure data is missing for some rows, or it might occur on a different day than scheduled. This presents a problem in calculating the time differences correctly.

The Four Cases to Consider

Missing Data Case: The actual departure column is missing data due to a cancellation.

Normal Case: The actual departure occurs on the same day as the scheduled departure and is on time or later.

Depart Next Day Case: The actual departure occurs later, but the date changes without formal indication.

Depart Before Scheduled Case: The actual departure occurs a few minutes before the scheduled time.

The difficulty arises mainly in handling cases 3 and 4, where the absence of date information complicates accurate calculations.

The Solution: Step-by-Step Guide

To address this challenge efficiently, you can set up a process that evaluates the conditions of the scheduled and actual departures, adjusting for day changes when necessary.

Step 1: Prepare Data

First, you need to convert the scheduled departure times to a datetime format:

[[See Video to Reveal this Text or Code Snippet]]

Step 2: Combine Scheduled and Actual Times

Next, create a new column that includes both the date of the scheduled departure and the time from the actual departure:

[[See Video to Reveal this Text or Code Snippet]]

Step 3: Define Delay Conditions

Set a maximum expected delay interval (For example, 4 hours) and create masks to identify cases of early or late departures:

[[See Video to Reveal this Text or Code Snippet]]

Step 4: Adjust Departure Times Based on Conditions

Apply adjustments to the actual departure times based on whether they are considered early or late:

[[See Video to Reveal this Text or Code Snippet]]

Step 5: Calculate the Time Difference

Finally, calculate the time differences in minutes:

[[See Video to Reveal this Text or Code Snippet]]

Conclusion

By following these steps, handling time differences in datasets with varying conditions can become straightforward and efficient. This approach minimizes the risk of using slower methods like .apply() and ensures that calculations are performed in a way that can cope with potentially large datasets.

If you're facing similar challenges in processing time-based data, consider applying these strategies in your own projects. You'll find that, with a little organization and clarity in your logic, it is possible to derive insights with speed and accuracy.

Feel free to share your thoughts or any questions you may have, and let's solve complex data challenges together!

Комментарии

Информация по комментариям в разработке

Похожие видео

  • О нас
  • Контакты
  • Отказ от ответственности - Disclaimer
  • Условия использования сайта - TOS
  • Политика конфиденциальности

video2dn Copyright © 2023 - 2025

Контакты для правообладателей [email protected]