Logo video2dn
  • Сохранить видео с ютуба
  • Категории
    • Музыка
    • Кино и Анимация
    • Автомобили
    • Животные
    • Спорт
    • Путешествия
    • Игры
    • Люди и Блоги
    • Юмор
    • Развлечения
    • Новости и Политика
    • Howto и Стиль
    • Diy своими руками
    • Образование
    • Наука и Технологии
    • Некоммерческие Организации
  • О сайте

Скачать или смотреть Optimising pandas iterrows for Large DataFrames

  • vlogize
  • 2025-08-04
  • 1
Optimising pandas iterrows for Large DataFrames
How to optimise pandas iterrows with large dfpythonpandasdataframe
  • ok logo

Скачать Optimising pandas iterrows for Large DataFrames бесплатно в качестве 4к (2к / 1080p)

У нас вы можете скачать бесплатно Optimising pandas iterrows for Large DataFrames или посмотреть видео с ютуба в максимальном доступном качестве.

Для скачивания выберите вариант из формы ниже:

  • Информация по загрузке:

Cкачать музыку Optimising pandas iterrows for Large DataFrames бесплатно в формате MP3:

Если иконки загрузки не отобразились, ПОЖАЛУЙСТА, НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если у вас возникли трудности с загрузкой, пожалуйста, свяжитесь с нами по контактам, указанным в нижней части страницы.
Спасибо за использование сервиса video2dn.com

Описание к видео Optimising pandas iterrows for Large DataFrames

Struggling with the performance of `pandas.iterrows` on large DataFrames? Learn how to optimise your data processing tasks effectively in this guide.
---
This video is based on the question https://stackoverflow.com/q/76461753/ asked by the user 'Harry Stuart' ( https://stackoverflow.com/u/6017833/ ) and on the answer https://stackoverflow.com/a/76462054/ provided by the user 'Geom' ( https://stackoverflow.com/u/13667627/ ) at 'Stack Overflow' website. Thanks to these great users and Stackexchange community for their contributions.

Visit these links for original content and any more details, such as alternate solutions, latest updates/developments on topic, comments, revision history etc. For example, the original title of the Question was: How to optimise pandas iterrows with large df

Also, Content (except music) licensed under CC BY-SA https://meta.stackexchange.com/help/l...
The original Question post is licensed under the 'CC BY-SA 4.0' ( https://creativecommons.org/licenses/... ) license, and the original Answer post is licensed under the 'CC BY-SA 4.0' ( https://creativecommons.org/licenses/... ) license.

If anything seems off to you, please feel free to write me at vlogize [AT] gmail [DOT] com.
---
Optimising pandas iterrows for Large DataFrames: A Comprehensive Guide

When working with large datasets in Python using the pandas library, you may face performance issues, especially when trying to iterate through rows of a DataFrame using iterrows(). This common approach can lead to slow execution times, particularly with large DataFrames. In this guide, we will discuss the problem and provide an efficient solution to process large DataFrames effectively.

The Problem

Suppose you have two DataFrames: a customers DataFrame containing 30,000 rows and a transactions DataFrame with 2 million rows. You want to aggregate transaction amounts for each customer based on their sign-up timestamps and the transaction timestamps. Here's a simplified version of the code that illustrates the problem:

[[See Video to Reveal this Text or Code Snippet]]

While the above code may work, it is not efficient because:

Iterating through rows loses the advantages of vectorized operations.

The loop runs for each customer, which is computationally expensive for larger datasets.

The Solution

1. Understanding DataFrames

Before we dive into the solution, it's essential to understand the power of pandas DataFrames, which are designed for vectorized operations. This allows you to perform operations on entire columns or rows without needing to iterate explicitly.

2. Merging DataFrames

Instead of iterating through rows, we can utilize pandas' powerful merging capabilities. Start by merging the customers and transactions DataFrames on the customer_id column:

[[See Video to Reveal this Text or Code Snippet]]

3. Calculating Date Differences

Now that you have a combined DataFrame, calculate the date differences using vectorized operations:

[[See Video to Reveal this Text or Code Snippet]]

4. Filtering Data

Next, filter the DataFrame based on your date conditions:

[[See Video to Reveal this Text or Code Snippet]]

5. Aggregating Total Amounts

Finally, compute the total transaction amounts for each customer. Use the groupby() method to aggregate these figures more efficiently:

[[See Video to Reveal this Text or Code Snippet]]

Final Output

After applying the changes, your customers DataFrame will be updated with the total amounts calculated from the transactions DataFrame, and you will have significantly improved performance.

[[See Video to Reveal this Text or Code Snippet]]

This will display your updated DataFrame, showing the total amounts for each customer.

Conclusion

By avoiding the use of iterrows() and leveraging pandas' merging and vectorized operations, you have effectively optimized the performance of your DataFrame manipulations.

Keep in mind that this approach is just a starting point; there are always further optimizations you can explore. The key takeaway is to think in terms of operations on entire datasets rather than iterating through individual rows, which can lead to substantial speed gains.

Feel free to experiment with this method on your datasets, and be sure to share your results and experiences!

Комментарии

Информация по комментариям в разработке

Похожие видео

  • О нас
  • Контакты
  • Отказ от ответственности - Disclaimer
  • Условия использования сайта - TOS
  • Политика конфиденциальности

video2dn Copyright © 2023 - 2025

Контакты для правообладателей [email protected]