Logo video2dn
  • Сохранить видео с ютуба
  • Категории
    • Музыка
    • Кино и Анимация
    • Автомобили
    • Животные
    • Спорт
    • Путешествия
    • Игры
    • Люди и Блоги
    • Юмор
    • Развлечения
    • Новости и Политика
    • Howto и Стиль
    • Diy своими руками
    • Образование
    • Наука и Технологии
    • Некоммерческие Организации
  • О сайте

Скачать или смотреть Direct Preference Optimization (DPO) explained: Bradley-Terry model, log probabilities, math

  • Umar Jamil
  • 2024-04-13
  • 30843
Direct Preference Optimization (DPO) explained: Bradley-Terry model, log probabilities, math
rlhfreinforcement learningrlpytorchtrlhugging facepythontutorialmathai alignmentlanguage modelslarge language modelsdeep learningmachine learningdpodirect preference optimizationbradley terry modelpreference modelreward modelreinforcement learning from human feedback
  • ok logo

Скачать Direct Preference Optimization (DPO) explained: Bradley-Terry model, log probabilities, math бесплатно в качестве 4к (2к / 1080p)

У нас вы можете скачать бесплатно Direct Preference Optimization (DPO) explained: Bradley-Terry model, log probabilities, math или посмотреть видео с ютуба в максимальном доступном качестве.

Для скачивания выберите вариант из формы ниже:

  • Информация по загрузке:

Cкачать музыку Direct Preference Optimization (DPO) explained: Bradley-Terry model, log probabilities, math бесплатно в формате MP3:

Если иконки загрузки не отобразились, ПОЖАЛУЙСТА, НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если у вас возникли трудности с загрузкой, пожалуйста, свяжитесь с нами по контактам, указанным в нижней части страницы.
Спасибо за использование сервиса video2dn.com

Описание к видео Direct Preference Optimization (DPO) explained: Bradley-Terry model, log probabilities, math

In this video I will explain Direct Preference Optimization (DPO), an alignment technique for language models introduced in the paper "Direct Preference Optimization: Your Language Model is Secretly a Reward Model".
I start by introducing language models and how they are used for text generation. After briefly introducing the topic of AI alignment, I start by reviewing Reinforcement Learning (RL), a topic that is necessary to understand the reward model and its loss function.
I derive step by step the loss function of the reward model under the Bradley-Terry model of preferences, a derivation that is missing in the DPO paper.
Using the Bradley-Terry model, I build the loss of the DPO algorithm, not only explaining its math derivation, but also giving intuition on how it works.
In the last part, I describe how to use the loss practically, that is, how to calculate the log probabilities using a Transformer model, by showing how it is implemented in the Hugging Face library.

DPO paper: Rafailov, R., Sharma, A., Mitchell, E., Manning, C.D., Ermon, S. and Finn, C., 2024. Direct preference optimization: Your language model is secretly a reward model. Advances in Neural Information Processing Systems, 36. https://arxiv.org/abs/2305.18290

If you're interested in how to derive the optimal solution to the RL constrained optimization problem, I highly recommend the following paper (Appendinx A, equation 36):
Peng XB, Kumar A, Zhang G, Levine S. Advantage-weighted regression: Simple and scalable off-policy reinforcement learning. arXiv preprint arXiv:1910.00177. 2019 Oct 1. https://arxiv.org/abs/1910.00177

Slides PDF: https://github.com/hkproj/dpo-notes

Chapters
00:00:00 - Introduction
00:02:10 - Intro to Language Models
00:04:08 - AI Alignment
00:05:11 - Intro to RL
00:08:19 - RL for Language Models
00:10:44 - Reward model
00:13:07 - The Bradley-Terry model
00:21:34 - Optimization Objective
00:29:52 - DPO: deriving its loss
00:41:05 - Computing the log probabilities
00:47:27 - Conclusion

Комментарии

Информация по комментариям в разработке

Похожие видео

  • О нас
  • Контакты
  • Отказ от ответственности - Disclaimer
  • Условия использования сайта - TOS
  • Политика конфиденциальности

video2dn Copyright © 2023 - 2025

Контакты для правообладателей [email protected]