Logo video2dn
  • Сохранить видео с ютуба
  • Категории
    • Музыка
    • Кино и Анимация
    • Автомобили
    • Животные
    • Спорт
    • Путешествия
    • Игры
    • Люди и Блоги
    • Юмор
    • Развлечения
    • Новости и Политика
    • Howto и Стиль
    • Diy своими руками
    • Образование
    • Наука и Технологии
    • Некоммерческие Организации
  • О сайте

Скачать или смотреть Understanding the COUNT(*) vs SELECT Performance Discrepancy in MySQL

  • vlogize
  • 2025-04-05
  • 0
Understanding the COUNT(*) vs SELECT Performance Discrepancy in MySQL
why is count(*) vs select using an index key of different performances?mysql
  • ok logo

Скачать Understanding the COUNT(*) vs SELECT Performance Discrepancy in MySQL бесплатно в качестве 4к (2к / 1080p)

У нас вы можете скачать бесплатно Understanding the COUNT(*) vs SELECT Performance Discrepancy in MySQL или посмотреть видео с ютуба в максимальном доступном качестве.

Для скачивания выберите вариант из формы ниже:

  • Информация по загрузке:

Cкачать музыку Understanding the COUNT(*) vs SELECT Performance Discrepancy in MySQL бесплатно в формате MP3:

Если иконки загрузки не отобразились, ПОЖАЛУЙСТА, НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если у вас возникли трудности с загрузкой, пожалуйста, свяжитесь с нами по контактам, указанным в нижней части страницы.
Спасибо за использование сервиса video2dn.com

Описание к видео Understanding the COUNT(*) vs SELECT Performance Discrepancy in MySQL

Discover why `COUNT(*)` and `SELECT` queries using an index key exhibit different performance in MySQL. Learn about the underlying mechanics and tips for optimizing your queries.
---
This video is based on the question https://stackoverflow.com/q/78063146/ asked by the user 'Kousha' ( https://stackoverflow.com/u/834045/ ) and on the answer https://stackoverflow.com/a/78071261/ provided by the user 'Rick James' ( https://stackoverflow.com/u/1766831/ ) at 'Stack Overflow' website. Thanks to these great users and Stackexchange community for their contributions.

Visit these links for original content and any more details, such as alternate solutions, latest updates/developments on topic, comments, revision history etc. For example, the original title of the Question was: why is count(*) vs select using an index key of different performances?

Also, Content (except music) licensed under CC BY-SA https://meta.stackexchange.com/help/l...
The original Question post is licensed under the 'CC BY-SA 4.0' ( https://creativecommons.org/licenses/... ) license, and the original Answer post is licensed under the 'CC BY-SA 4.0' ( https://creativecommons.org/licenses/... ) license.

If anything seems off to you, please feel free to write me at vlogize [AT] gmail [DOT] com.
---
Understanding the COUNT(*) vs SELECT Performance Discrepancy in MySQL

In the world of MySQL databases, understanding query performance can be a game changer for developers and database administrators alike. A common question arises: why do COUNT(*) and SELECT queries utilizing the same index key show different performances?

To clarify, let’s explore the difference in functionality and underlying mechanics between the two querying methods.

The Queries in Question

The Queries

Count Query:

[[See Video to Reveal this Text or Code Snippet]]

Select Query:

[[See Video to Reveal this Text or Code Snippet]]

Both queries leverage the index key for data retrieval, but they accomplish their tasks differently.

Why is COUNT(*) More Optimized?

The performance discrepancy is primarily due to how each query interacts with the database index and how data is returned. Here are the key elements that play a role:

1. Efficient Use of B+ Tree Index

Count Query:
The COUNT(*) query effectively uses the B+ Tree structure associated with the index on indexKey. It dives directly into the tree at someValue, scanning through the data until it no longer encounters someValue. This streamlined navigational approach leads to quicker results.

Select Query:
Conversely, the SELECT * may operate in one of two ways that generally reduce efficiency:

It could traverse the B+ Tree to find each row's primary key, requiring additional lookups to retrieve all columns from the table.

If there's a large number of matching rows, it may simply scan through the B+ Tree but needs to read and discard any irrelevant rows, increasing both overhead and processing time.

2. Result Set Differences

The SELECT * query returns multiple rows of data, necessitating more data transmission between the server and client, leading to increased latency.

The COUNT(*) query, however, only returns a single number, which is much quicker to handle.

3. Optimizer Challenges

The database optimizer occasionally struggles to predict the best approach between pulling rows directly or looking up keys first. This unpredictability can further slow down SELECT queries due to potential back-and-forth processing.

Alternative Optimizations

Using the following query structures can enhance performance:

Existence Check:

[[See Video to Reveal this Text or Code Snippet]]

This way stops searching after the first match or failure, optimizing the process.

Primary Key Queries:

[[See Video to Reveal this Text or Code Snippet]]

If id is a clustered primary key, these will return optimal results quickly.

Tips for COUNT Optimization

Using COUNT(*) is Preferred: The * doesn’t require column inspections compared to other COUNT variations.

Understand Different COUNT Forms:

COUNT(1) behaves similarly to COUNT(*).

COUNT(x) checks for null values, which may affect counts.

COUNT(DISTINCT x) counts unique values, which may add complexity.

Conclusion

To summarize, while both SELECT * and COUNT(*) queries utilize an index key, the underlying mechanics and data handling make COUNT(*) significantly more efficient. By employing these insights, developers can optimize their SQL queries and improve the performance of their MySQL database applications.

Understanding the inner workings of SQL queries can empower you to make more informed decisions, leading to better performance and user experience in your applications.

Комментарии

Информация по комментариям в разработке

Похожие видео

  • О нас
  • Контакты
  • Отказ от ответственности - Disclaimer
  • Условия использования сайта - TOS
  • Политика конфиденциальности

video2dn Copyright © 2023 - 2025

Контакты для правообладателей [email protected]