Logo video2dn
  • Сохранить видео с ютуба
  • Категории
    • Музыка
    • Кино и Анимация
    • Автомобили
    • Животные
    • Спорт
    • Путешествия
    • Игры
    • Люди и Блоги
    • Юмор
    • Развлечения
    • Новости и Политика
    • Howto и Стиль
    • Diy своими руками
    • Образование
    • Наука и Технологии
    • Некоммерческие Организации
  • О сайте

Скачать или смотреть Netesh & Nazlı Alagöz - Causal Inference Framework for incrementality | PyData Amsterdam 2025

  • PyData
  • 2025-10-28
  • 235
Netesh & Nazlı Alagöz - Causal Inference Framework for incrementality | PyData Amsterdam 2025
PythonTutorialEducationNumFOCUSPyDataOpensourcelearnsoftwarepython 3Juliacodinglearn to codehow to programscientific programming
  • ok logo

Скачать Netesh & Nazlı Alagöz - Causal Inference Framework for incrementality | PyData Amsterdam 2025 бесплатно в качестве 4к (2к / 1080p)

У нас вы можете скачать бесплатно Netesh & Nazlı Alagöz - Causal Inference Framework for incrementality | PyData Amsterdam 2025 или посмотреть видео с ютуба в максимальном доступном качестве.

Для скачивания выберите вариант из формы ниже:

  • Информация по загрузке:

Cкачать музыку Netesh & Nazlı Alagöz - Causal Inference Framework for incrementality | PyData Amsterdam 2025 бесплатно в формате MP3:

Если иконки загрузки не отобразились, ПОЖАЛУЙСТА, НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если у вас возникли трудности с загрузкой, пожалуйста, свяжитесь с нами по контактам, указанным в нижней части страницы.
Спасибо за использование сервиса video2dn.com

Описание к видео Netesh & Nazlı Alagöz - Causal Inference Framework for incrementality | PyData Amsterdam 2025

www.pydata.org

This talk dives into the challenge of measuring the causal impact of app installs on customer loyalty and value, a question at the heart of data-driven marketing. While randomized controlled trials are the gold standard, they’re rarely feasible in this context. Instead, we’ll explore how observational causal inference methods can be thoughtfully applied to estimate incremental value with careful consideration of confounding, selection, and measurement biases.

This session is designed for data scientists, marketing analysts, and applied researchers with a working knowledge of statistics and causal inference concepts. We’ll keep the tone practical and informative, focusing on real-world challenges and solutions rather than heavy mathematical derivations.

Attendees will learn:

How to design robust observational studies for business impact
Strategies for covariate selection and bias mitigation
The use of multiple statistical and design-based causal inference approaches
Methods for validating and refuting causal claims in the absence of true randomization. We’ll share actionable insights, code snippets, and a GitHub repository with example workflows so you can apply these techniques in your own organization. By the end of the talk, you’ll be equipped to design more transparent and credible causal studies-and make better decisions about where to invest your marketing dollars.

Requirements: A basic understanding of causal inference and Python is recommended. Materials and relevant links will be shared during the session

PyData is an educational program of NumFOCUS, a 501(c)3 non-profit organization in the United States. PyData provides a forum for the international community of users and developers of data analysis tools to share ideas and learn from each other. The global PyData network promotes discussion of best practices, new approaches, and emerging technologies for data management, processing, analytics, and visualization. PyData communities approach data science using many languages, including (but not limited to) Python, Julia, and R.

PyData conferences aim to be accessible and community-driven, with novice to advanced level presentations. PyData tutorials and talks bring attendees the latest project features along with cutting-edge use cases.

00:00 Welcome!
00:10 Help us add time stamps or captions to this video! See the description for details.

Want to help add timestamps to our YouTube videos to help with discoverability? Find out more here: https://github.com/numfocus/YouTubeVi...

Комментарии

Информация по комментариям в разработке

Похожие видео

  • О нас
  • Контакты
  • Отказ от ответственности - Disclaimer
  • Условия использования сайта - TOS
  • Политика конфиденциальности

video2dn Copyright © 2023 - 2025

Контакты для правообладателей [email protected]