Logo video2dn
  • Сохранить видео с ютуба
  • Категории
    • Музыка
    • Кино и Анимация
    • Автомобили
    • Животные
    • Спорт
    • Путешествия
    • Игры
    • Люди и Блоги
    • Юмор
    • Развлечения
    • Новости и Политика
    • Howto и Стиль
    • Diy своими руками
    • Образование
    • Наука и Технологии
    • Некоммерческие Организации
  • О сайте

Скачать или смотреть How to Add a Mask to Loss Function in PyTorch for Selective Backpropagation

  • vlogize
  • 2025-04-15
  • 1
How to Add a Mask to Loss Function in PyTorch for Selective Backpropagation
How to add mask to loss function in PyTorchpythonpytorch
  • ok logo

Скачать How to Add a Mask to Loss Function in PyTorch for Selective Backpropagation бесплатно в качестве 4к (2к / 1080p)

У нас вы можете скачать бесплатно How to Add a Mask to Loss Function in PyTorch for Selective Backpropagation или посмотреть видео с ютуба в максимальном доступном качестве.

Для скачивания выберите вариант из формы ниже:

  • Информация по загрузке:

Cкачать музыку How to Add a Mask to Loss Function in PyTorch for Selective Backpropagation бесплатно в формате MP3:

Если иконки загрузки не отобразились, ПОЖАЛУЙСТА, НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если у вас возникли трудности с загрузкой, пожалуйста, свяжитесь с нами по контактам, указанным в нижней части страницы.
Спасибо за использование сервиса video2dn.com

Описание к видео How to Add a Mask to Loss Function in PyTorch for Selective Backpropagation

Learn how to implement a masking technique in your PyTorch loss function to enable selective backpropagation effectively.
---
This video is based on the question https://stackoverflow.com/q/68063453/ asked by the user 'Mohit Lamba' ( https://stackoverflow.com/u/13049379/ ) and on the answer https://stackoverflow.com/a/68065322/ provided by the user 'trialNerror' ( https://stackoverflow.com/u/10935717/ ) at 'Stack Overflow' website. Thanks to these great users and Stackexchange community for their contributions.

Visit these links for original content and any more details, such as alternate solutions, latest updates/developments on topic, comments, revision history etc. For example, the original title of the Question was: How to add mask to loss function in PyTorch

Also, Content (except music) licensed under CC BY-SA https://meta.stackexchange.com/help/l...
The original Question post is licensed under the 'CC BY-SA 4.0' ( https://creativecommons.org/licenses/... ) license, and the original Answer post is licensed under the 'CC BY-SA 4.0' ( https://creativecommons.org/licenses/... ) license.

If anything seems off to you, please feel free to write me at vlogize [AT] gmail [DOT] com.
---
How to Add a Mask to Loss Function in PyTorch for Selective Backpropagation

In the world of deep learning, particularly when working with PyTorch, one common issue developers encounter is the need to implement customized conditions during backpropagation. Specifically, you might find yourself in situations where you want to backpropagate only over certain pixels of your output images based on the loss calculations.

The Problem

Imagine you have a PyTorch model that generates two outputs: op and pseudo-op. You want to carry out backpropagation only for those pixels where the loss from op is less than the loss from pseudo-op. This situation poses a challenge, as the straightforward usage of loss(op, gt) wouldn't allow for such selective backpropagation.

To put it simply, your goal can be summarized as:

Only backpropagate for pixels where loss(op_i, gt_i) < loss(pseudo-op_i, gt_i).

So, how can we achieve this in a clean and efficient manner?

The Solution: Utilizing ReLU for Conditional Backpropagation

Fortunately, a smart combination of PyTorch functions can get you there. This solution involves using the relu function alongside the .detach() method. Below is a step-by-step breakdown of the solution:

Step 1: Define Your Loss Function

First, you need to ensure that your loss function is set up to calculate the mean absolute error between your predictions and the targets.

[[See Video to Reveal this Text or Code Snippet]]

Step 2: Calculate Your Losses

Now, you can compute the losses for both outputs:

[[See Video to Reveal this Text or Code Snippet]]

Step 3: Use ReLU to Generate the Mask

Next, you will leverage the ReLU function to determine which pixels should be used for backpropagation. By applying detach() to o2, you ensure it does not affect the gradients:

[[See Video to Reveal this Text or Code Snippet]]

Step 4: Perform Selective Backpropagation

Finally, you can carry out the backpropagation, but only where the condition (i.e., o1 < o2) holds true:

[[See Video to Reveal this Text or Code Snippet]]

Explanation of the Approach

The relu function acts as a filter, generating gradients only when o1 is less than o2.

By detaching o2, you're treating it as a constant throughout this operation, which stabilizes your calculations.

This method allows you to efficiently focus on the gradients you care about while ignoring those that do not meet your specified condition.

Conclusion

By utilizing the power of PyTorch's built-in functions, you can set up a masking system within your loss function that enables selective backpropagation. This technique not only improves computational efficiency but also tailors your model's learning process to focus on the most relevant data.

Now you're all set to implement this approach in your next deep learning project! Happy coding!

Комментарии

Информация по комментариям в разработке

Похожие видео

  • О нас
  • Контакты
  • Отказ от ответственности - Disclaimer
  • Условия использования сайта - TOS
  • Политика конфиденциальности

video2dn Copyright © 2023 - 2025

Контакты для правообладателей [email protected]