Logo video2dn
  • Сохранить видео с ютуба
  • Категории
    • Музыка
    • Кино и Анимация
    • Автомобили
    • Животные
    • Спорт
    • Путешествия
    • Игры
    • Люди и Блоги
    • Юмор
    • Развлечения
    • Новости и Политика
    • Howto и Стиль
    • Diy своими руками
    • Образование
    • Наука и Технологии
    • Некоммерческие Организации
  • О сайте

Скачать или смотреть Understanding Sparse Array Memory Leaks in Python with SciPy

  • vlogize
  • 2025-08-01
  • 1
Understanding Sparse Array Memory Leaks in Python with SciPy
possible scipy Sparse array memory leak in pythonpythonnumpyscipysparse matrix
  • ok logo

Скачать Understanding Sparse Array Memory Leaks in Python with SciPy бесплатно в качестве 4к (2к / 1080p)

У нас вы можете скачать бесплатно Understanding Sparse Array Memory Leaks in Python with SciPy или посмотреть видео с ютуба в максимальном доступном качестве.

Для скачивания выберите вариант из формы ниже:

  • Информация по загрузке:

Cкачать музыку Understanding Sparse Array Memory Leaks in Python with SciPy бесплатно в формате MP3:

Если иконки загрузки не отобразились, ПОЖАЛУЙСТА, НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если у вас возникли трудности с загрузкой, пожалуйста, свяжитесь с нами по контактам, указанным в нижней части страницы.
Спасибо за использование сервиса video2dn.com

Описание к видео Understanding Sparse Array Memory Leaks in Python with SciPy

Explore the issue of memory leaks when using `sparse arrays` in Python, particularly with `SciPy` and `NumPy`. Learn effective strategies to avoid out-of-memory errors and optimize your code.
---
This video is based on the question https://stackoverflow.com/q/71375061/ asked by the user 'Phillip Maire' ( https://stackoverflow.com/u/13944456/ ) and on the answer https://stackoverflow.com/a/71375672/ provided by the user 'hpaulj' ( https://stackoverflow.com/u/901925/ ) at 'Stack Overflow' website. Thanks to these great users and Stackexchange community for their contributions.

Visit these links for original content and any more details, such as alternate solutions, latest updates/developments on topic, comments, revision history etc. For example, the original title of the Question was: possible scipy Sparse array memory leak in python

Also, Content (except music) licensed under CC BY-SA https://meta.stackexchange.com/help/l...
The original Question post is licensed under the 'CC BY-SA 4.0' ( https://creativecommons.org/licenses/... ) license, and the original Answer post is licensed under the 'CC BY-SA 4.0' ( https://creativecommons.org/licenses/... ) license.

If anything seems off to you, please feel free to write me at vlogize [AT] gmail [DOT] com.
---
Understanding Sparse Array Memory Leaks in Python with SciPy

Using sparse arrays in Python can significantly optimize the performance and memory usage of your applications, especially when dealing with large datasets. However, one can sometimes encounter unexpected memory behavior, including out-of-memory (OOM) errors. In this post, we'll demystify a particular issue surrounding SciPy's sparse arrays and guide you to a resolution.

The Problem: An Unexpected Memory Explosion

You might find yourself in a situation where you set out to load a dataset from an H5 file and convert it into a sparse matrix using SciPy. Everything seems to be going well until the memory usage spikes unexpectedly, and you end up with an OOM error.

Example Scenario

Consider the following:

You're using Google Colab with a generous 51 GB of RAM.

You load data in batches but find that after a few iterations, memory usage skyrockets.

Though your variables appear small, the system struggles with memory.

In essence, the core of the problem lies in how sparse matrices are constructed, combined, and how memory is managed.

The Solution: A Structured Approach

Let's break down the solution into manageable sections to help you understand and apply the correct practices when working with sparse matrices.

1. Understanding Sparse Matrix Size Calculations

Calculating the size of a sparse matrix can be misleading if done incorrectly. When evaluating the memory footprint, consider:

[[See Video to Reveal this Text or Code Snippet]]

This method accurately gives you the total memory usage of the sparse structure, taking into account all necessary components.

2. Conversion from Dense to Sparse

When converting a dense matrix to a sparse matrix, especially in larger sizes:

Ensure that the density of the sparse matrix is suitable. A higher density may lead you to believe you're saving memory while you're actually consuming more.

A density of around 0.1 or less is optimal for both memory and computation efficiency.

3. Stacking Sparse Matrices with Care

When using sparse.hstack, it’s important to note that you may end up with different types of sparse matrices. Upon combining them, the underlying structure can drastically change, which may lead to increased memory usage.

Example

If you compare the outputs of:

[[See Video to Reveal this Text or Code Snippet]]

With:

[[See Video to Reveal this Text or Code Snippet]]

You may find the memory consumption strikingly different, as illustrated by the outputs of memory before and after garbage collection (GC).

4. Efficient Memory Management

Utilizing Python's garbage collection (gc) can help reduce memory usage significantly. Invoking gc.collect() regularly after operations can mitigate memory usage spikes. However, be mindful of when and where this collection takes place to avoid performance degradation.

5. Practical Example of Sparse Matrix Operations

Here's a direct comparison:

[[See Video to Reveal this Text or Code Snippet]]

By monitoring the individual components of the sparse matrix, you can more accurately assess your memory usage.

Conclusion

By applying these strategies, you should experience a reduction in unexpected memory behavior when using sparse matrices in Python with SciPy. Ensure that you properly calculate memory sizes, manage your sparse matrix types, and leverage garbage collection to maintain efficiency.

If you find yourself facing memory issues while using sparse arrays, refer back to this guide to troubleshoot and enhance your workflow effectively!

Комментарии

Информация по комментариям в разработке

Похожие видео

  • О нас
  • Контакты
  • Отказ от ответственности - Disclaimer
  • Условия использования сайта - TOS
  • Политика конфиденциальности

video2dn Copyright © 2023 - 2025

Контакты для правообладателей [email protected]