Logo video2dn
  • Сохранить видео с ютуба
  • Категории
    • Музыка
    • Кино и Анимация
    • Автомобили
    • Животные
    • Спорт
    • Путешествия
    • Игры
    • Люди и Блоги
    • Юмор
    • Развлечения
    • Новости и Политика
    • Howto и Стиль
    • Diy своими руками
    • Образование
    • Наука и Технологии
    • Некоммерческие Организации
  • О сайте

Скачать или смотреть Beyond Pearson's R: Master Nonlinear Relationships in Finance!

  • quantlabs
  • 2025-05-29
  • 49
Beyond Pearson's R: Master Nonlinear Relationships in Finance!
  • ok logo

Скачать Beyond Pearson's R: Master Nonlinear Relationships in Finance! бесплатно в качестве 4к (2к / 1080p)

У нас вы можете скачать бесплатно Beyond Pearson's R: Master Nonlinear Relationships in Finance! или посмотреть видео с ютуба в максимальном доступном качестве.

Для скачивания выберите вариант из формы ниже:

  • Информация по загрузке:

Cкачать музыку Beyond Pearson's R: Master Nonlinear Relationships in Finance! бесплатно в формате MP3:

Если иконки загрузки не отобразились, ПОЖАЛУЙСТА, НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если у вас возникли трудности с загрузкой, пожалуйста, свяжитесь с нами по контактам, указанным в нижней части страницы.
Спасибо за использование сервиса video2dn.com

Описание к видео Beyond Pearson's R: Master Nonlinear Relationships in Finance!

Hey everyone, Brian here from Quantabsnet.com! 👋 I'm excited to walk you through an insightful quantitative finance project coded in Python: Nonlinear Correlation Analysis.
While more advanced C++ and AI projects (think Anthropic!) are on the horizon, this project provides a fantastic look into pure quant finance, demonstrating how to uncover complex relationships in data that simple linear models miss.
🔗 Want to dive deeper or get the code?
Grab your 7-DAY FREE TRIAL for Quan Analytics here: https://www.quantlabsnet.com/plans-pr...
Explore more projects and resources with our FREE C++ HFT ebook at Quantabsnet.com: https://www.quantlabsnet.com/registra...

Get our high level code at:
https://www.quantlabsnet.com/post/how...

________________________________________
📊 What's This Project About?

In quantitative finance, not all data relationships are straight lines! Traditional methods like Pearson's R are great for linear connections, but often fall short with complex, nonlinear patterns. This project tackles that head-on.

We'll explore how to:

• Calculate various correlation coefficients for nonlinear relationships.
• Build models to capture these intricate associations.
• Leverage advanced quant techniques, mathematical frameworks, and visualization tools.

🔍 Key Methods & Techniques We'll Cover:

• Pearson’s R: For a baseline linear check.
• Spearman’s Rank-Based Correlation: Uncovering monotonic relationships.
• Kendall’s Rank-Based Correlation: Another robust measure for monotonic associations.
• Distance Correlation: Capturing a wide range of dependencies, including nonlinear ones.
• Mutual Information: An information-theoretic approach to measure shared information.
• Non-Parametric Curve Fitting: Estimating relationships without predefined model forms.
• Model Fitting: Applying exponential, logistic, and power law models.
• Visualization: Using scatter plots with fitted curves for clear, intuitive understanding.
•
________________________________________

💡 Why is Nonlinear Correlation Analysis CRUCIAL in Quant Finance?

Financial markets are complex! Relationships between variables like stock prices, interest rates, and volatility are rarely simple.

• Relying only on linear models can lead to misleading conclusions and missed opportunities.
• Nonlinear analysis helps uncover hidden patterns, leading to:
o More accurate predictions.
o Better risk management.
o Optimized portfolios.

We'll use synthetic data for this demo, but these techniques are directly applicable to real-world financial data!

________________________________________
⚙️ Project Workflow & Python Tools:

1. Data Generation: (Synthetic for demo, easily replaceable with your real data!)
2. Correlation Calculation: Computing diverse correlation measures.
3. Model Fitting: Applying nonlinear models (exponential, logistic, power law).
4. Visualization: Creating scatter plots with fitted curves.
5. Reporting: Summarizing findings.
6. Interpretation: Understanding what the results mean.

We'll be using a powerful yet simple Python script leveraging libraries like:

• NumPy: For numerical operations.
• Pandas: For data manipulation.
• SciPy: For statistical functions and curve fitting.
• Scikit-learn: For mutual information.
• Matplotlib: For creating our visualizations.

________________________________________
🚀 What's Next & How to Learn More?

This project is just the beginning! Stay tuned for more advanced quant finance and AI projects, including high-performance computing and machine learning for trading in C++.

👉 Ready to get hands-on?

• Explore Quan Analytics (7-day free trial link above!) for this project and more.
• Visit the "Learn" tab on Quantabsnet.com.
• Join our email list for the latest updates!

Key Takeaways:

1. Nonlinear relationships are everywhere in finance.
2. A diverse toolkit of methods is essential.
3. Visualization makes complex data understandable.
4. These techniques have powerful practical applications.

________________________________________
Thanks for watching! I'm passionate about sharing these projects and helping you build your quant skills. If you found this helpful:

👍 LIKE the video
💬 COMMENT with your thoughts or questions
🔗 SHARE it with others who might be interested
🔔 SUBSCRIBE for more quant finance and AI content!

See you in the next video! Take care.

Комментарии

Информация по комментариям в разработке

Похожие видео

  • О нас
  • Контакты
  • Отказ от ответственности - Disclaimer
  • Условия использования сайта - TOS
  • Политика конфиденциальности

video2dn Copyright © 2023 - 2025

Контакты для правообладателей [email protected]