Logo video2dn
  • Сохранить видео с ютуба
  • Категории
    • Музыка
    • Кино и Анимация
    • Автомобили
    • Животные
    • Спорт
    • Путешествия
    • Игры
    • Люди и Блоги
    • Юмор
    • Развлечения
    • Новости и Политика
    • Howto и Стиль
    • Diy своими руками
    • Образование
    • Наука и Технологии
    • Некоммерческие Организации
  • О сайте

Скачать или смотреть Alpha Beta Pruning In AI Min Max Algorithm Variant Game Theory Alpha Beta Pruning Example

  • Department of Computer Engineering
  • 2022-03-21
  • 48
Alpha Beta Pruning In AI Min Max Algorithm Variant Game Theory Alpha Beta Pruning Example
alpha beta pruning in artificial intelligence in englishalpha beta pruning in artificial intelligence in hindialpha beta pruning in artificial intelligence examplesalpha beta pruning in artificial intelligence education 4ualpha beta pruning in artificial intelligence gate smashersalpha beta pruning in artificial intelligence with exampleexample of alpha beta pruning in artificial intelligencealpha and beta pruning in ai
  • ok logo

Скачать Alpha Beta Pruning In AI Min Max Algorithm Variant Game Theory Alpha Beta Pruning Example бесплатно в качестве 4к (2к / 1080p)

У нас вы можете скачать бесплатно Alpha Beta Pruning In AI Min Max Algorithm Variant Game Theory Alpha Beta Pruning Example или посмотреть видео с ютуба в максимальном доступном качестве.

Для скачивания выберите вариант из формы ниже:

  • Информация по загрузке:

Cкачать музыку Alpha Beta Pruning In AI Min Max Algorithm Variant Game Theory Alpha Beta Pruning Example бесплатно в формате MP3:

Если иконки загрузки не отобразились, ПОЖАЛУЙСТА, НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если у вас возникли трудности с загрузкой, пожалуйста, свяжитесь с нами по контактам, указанным в нижней части страницы.
Спасибо за использование сервиса video2dn.com

Описание к видео Alpha Beta Pruning In AI Min Max Algorithm Variant Game Theory Alpha Beta Pruning Example

Alpha-Beta Pruning

Alpha-beta pruning is a modified version of the minimax algorithm. It is an optimization technique for the minimax algorithm.
As we have seen in the minimax search algorithm that the number of game states it has to examine are exponential in depth of the tree. Since we cannot eliminate the exponent, but we can cut it to half. Hence there is a technique by which without checking each node of the game tree we can compute the correct minimax decision, and this technique is called pruning. This involves two threshold parameter Alpha and beta for future expansion, so it is called alpha-beta pruning. It is also called as Alpha-Beta Algorithm.
Alpha-beta pruning can be applied at any depth of a tree, and sometimes it not only prune the tree leaves but also entire sub-tree.
The two-parameter can be defined as:
Alpha: The best (highest-value) choice we have found so far at any point along the path of Maximizer. The initial value of alpha is -∞.
Beta: The best (lowest-value) choice we have found so far at any point along the path of Minimizer. The initial value of beta is +∞.
The Alpha-beta pruning to a standard minimax algorithm returns the same move as the standard algorithm does, but it removes all the nodes which are not really affecting the final decision but making algorithm slow. Hence by pruning these nodes, it makes the algorithm fast.
Key points about alpha-beta pruning:

The Max player will only update the value of alpha.
The Min player will only update the value of beta.
While backtracking the tree, the node values will be passed to upper nodes instead of values of alpha and beta.
We will only pass the alpha, beta values to the child nodes.
Alpha–beta pruning is a search algorithm that seeks to decrease the number of nodes that are evaluated by the minimax algorithm in its search tree. It is an adversarial search algorithm used commonly for machine playing of two-player games (Tic-tac-toe, Chess, Go, etc.). It stops evaluating a move when at least one possibility has been found that proves the move to be worse than a previously examined move. Such moves need not be evaluated further. When applied to a standard minimax tree, it returns the same move as minimax would, but prunes away branches that cannot possibly influence the final decision.

Комментарии

Информация по комментариям в разработке

Похожие видео

  • О нас
  • Контакты
  • Отказ от ответственности - Disclaimer
  • Условия использования сайта - TOS
  • Политика конфиденциальности

video2dn Copyright © 2023 - 2025

Контакты для правообладателей [email protected]