Logo video2dn
  • Сохранить видео с ютуба
  • Категории
    • Музыка
    • Кино и Анимация
    • Автомобили
    • Животные
    • Спорт
    • Путешествия
    • Игры
    • Люди и Блоги
    • Юмор
    • Развлечения
    • Новости и Политика
    • Howto и Стиль
    • Diy своими руками
    • Образование
    • Наука и Технологии
    • Некоммерческие Организации
  • О сайте

Скачать или смотреть Daniel Malinsky: Explaining the Behavior of Black-Box Prediction Algorithms with Causal Learning

  • Online Causal Inference Seminar
  • 2021-09-19
  • 943
Daniel Malinsky: Explaining the Behavior of Black-Box Prediction Algorithms with Causal Learning
  • ok logo

Скачать Daniel Malinsky: Explaining the Behavior of Black-Box Prediction Algorithms with Causal Learning бесплатно в качестве 4к (2к / 1080p)

У нас вы можете скачать бесплатно Daniel Malinsky: Explaining the Behavior of Black-Box Prediction Algorithms with Causal Learning или посмотреть видео с ютуба в максимальном доступном качестве.

Для скачивания выберите вариант из формы ниже:

  • Информация по загрузке:

Cкачать музыку Daniel Malinsky: Explaining the Behavior of Black-Box Prediction Algorithms with Causal Learning бесплатно в формате MP3:

Если иконки загрузки не отобразились, ПОЖАЛУЙСТА, НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если у вас возникли трудности с загрузкой, пожалуйста, свяжитесь с нами по контактам, указанным в нижней части страницы.
Спасибо за использование сервиса video2dn.com

Описание к видео Daniel Malinsky: Explaining the Behavior of Black-Box Prediction Algorithms with Causal Learning

"Explaining the Behavior of Black-Box Prediction Algorithms with Causal Learning" by Daniel Malinsky (Columbia University)
Discussant: Joshua Loftus (London School of Economics)

Abstract: We propose to explain the behavior of black-box prediction methods (e.g., deep neural networks trained on image pixel data) using causal graphical models. Specifically, we explore learning the structure of a causal graph where the nodes represent prediction outcomes along with a set of macro-level “interpretable” features, while allowing for arbitrary unmeasured confounding among these variables. The resulting graph may indicate which of the interpretable features, if any, are possible causes of the prediction outcome and which may be merely associated with prediction outcomes due to confounding. The approach is motivated by a counterfactual theory of causal explanation wherein good explanations point to factors that are “difference-makers” in an interventionist sense. The resulting analysis may be useful in algorithm auditing and evaluation, by identifying features which make a causal difference to the algorithm’s output.

Комментарии

Информация по комментариям в разработке

Похожие видео

  • О нас
  • Контакты
  • Отказ от ответственности - Disclaimer
  • Условия использования сайта - TOS
  • Политика конфиденциальности

video2dn Copyright © 2023 - 2025

Контакты для правообладателей [email protected]