Logo video2dn
  • Сохранить видео с ютуба
  • Категории
    • Музыка
    • Кино и Анимация
    • Автомобили
    • Животные
    • Спорт
    • Путешествия
    • Игры
    • Люди и Блоги
    • Юмор
    • Развлечения
    • Новости и Политика
    • Howto и Стиль
    • Diy своими руками
    • Образование
    • Наука и Технологии
    • Некоммерческие Организации
  • О сайте

Скачать или смотреть Concatenating DataFrame Rows Using a Mapping Index in Python pandas

  • vlogize
  • 2025-03-28
  • 0
Concatenating DataFrame Rows Using a Mapping Index in Python pandas
How to concatenate two Dataframe rows using a mapping indexpythonpandas
  • ok logo

Скачать Concatenating DataFrame Rows Using a Mapping Index in Python pandas бесплатно в качестве 4к (2к / 1080p)

У нас вы можете скачать бесплатно Concatenating DataFrame Rows Using a Mapping Index in Python pandas или посмотреть видео с ютуба в максимальном доступном качестве.

Для скачивания выберите вариант из формы ниже:

  • Информация по загрузке:

Cкачать музыку Concatenating DataFrame Rows Using a Mapping Index in Python pandas бесплатно в формате MP3:

Если иконки загрузки не отобразились, ПОЖАЛУЙСТА, НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если у вас возникли трудности с загрузкой, пожалуйста, свяжитесь с нами по контактам, указанным в нижней части страницы.
Спасибо за использование сервиса video2dn.com

Описание к видео Concatenating DataFrame Rows Using a Mapping Index in Python pandas

Learn how to efficiently concatenate two DataFrame rows in Python using a mapping index with `pandas`. This guide provides step-by-step solutions and examples.
---
This video is based on the question https://stackoverflow.com/q/70923588/ asked by the user 'Hamouza' ( https://stackoverflow.com/u/9754567/ ) and on the answer https://stackoverflow.com/a/70923648/ provided by the user 'mozway' ( https://stackoverflow.com/u/16343464/ ) at 'Stack Overflow' website. Thanks to these great users and Stackexchange community for their contributions.

Visit these links for original content and any more details, such as alternate solutions, latest updates/developments on topic, comments, revision history etc. For example, the original title of the Question was: How to concatenate two Dataframe rows using a mapping index

Also, Content (except music) licensed under CC BY-SA https://meta.stackexchange.com/help/l...
The original Question post is licensed under the 'CC BY-SA 4.0' ( https://creativecommons.org/licenses/... ) license, and the original Answer post is licensed under the 'CC BY-SA 4.0' ( https://creativecommons.org/licenses/... ) license.

If anything seems off to you, please feel free to write me at vlogize [AT] gmail [DOT] com.
---
How to Concatenate Two DataFrame Rows Using a Mapping Index

Working with data in pandas, the popular data manipulation library in Python, often requires combining or modifying data from multiple sources. A common problem arises when you need to concatenate rows from different DataFrames based on a specified mapping index. In this post, we will walk through a clear solution to achieve this, ensuring that the result is organized and user-friendly.

The Problem

Imagine you have two DataFrames, df1 and df2, as outlined here:

[[See Video to Reveal this Text or Code Snippet]]

In addition, you have a mapping DataFrame that tells you how to link the two:

[[See Video to Reveal this Text or Code Snippet]]

Your goal is to create a new DataFrame where each row combines relevant data from both df1 and df2 based on the mapping. The expected output should look like this:

[[See Video to Reveal this Text or Code Snippet]]

The Solution

To achieve the desired output, you can use a technique called a double merge in pandas. Below are the steps you can follow:

Step 1: Merge the DataFrames

You will merge df1 with the mapping DataFrame MAP, and then merge this result with df2. Here’s how to do it:

First Merge: Merge df2 with the MAP DataFrame on the C column and C_index.

Second Merge: After that, merge the result with df1 using the A column and A_index.

Step 2: Filter and Clean Up the Result

After merging the DataFrames, you might end up with some unwanted index columns. You can filter out these columns and only keep the required ones.

Here's the code implementing the above steps:

[[See Video to Reveal this Text or Code Snippet]]

Alternative Approach

Here’s a more linear syntax that achieves the same result but is arguably easier to read:

[[See Video to Reveal this Text or Code Snippet]]

The Output

Executing either of the above code snippets will yield the following DataFrame:

[[See Video to Reveal this Text or Code Snippet]]

This output matches our expectations and showcases the successful concatenation of rows based on the mapping indices provided.

Conclusion

Combining rows from multiple DataFrames using a mapping index in pandas can be a straightforward task with the right approach. By following the steps outlined above, you can easily merge DataFrames to extract meaningful relationships from your data, allowing for richer analysis and insights.

For further data manipulation tasks, remember that merging is just one of the powerful features that pandas offers. Keep exploring to maximize your data analysis capabilities!

Комментарии

Информация по комментариям в разработке

Похожие видео

  • О нас
  • Контакты
  • Отказ от ответственности - Disclaimer
  • Условия использования сайта - TOS
  • Политика конфиденциальности

video2dn Copyright © 2023 - 2025

Контакты для правообладателей [email protected]