Logo video2dn
  • Сохранить видео с ютуба
  • Категории
    • Музыка
    • Кино и Анимация
    • Автомобили
    • Животные
    • Спорт
    • Путешествия
    • Игры
    • Люди и Блоги
    • Юмор
    • Развлечения
    • Новости и Политика
    • Howto и Стиль
    • Diy своими руками
    • Образование
    • Наука и Технологии
    • Некоммерческие Организации
  • О сайте

Скачать или смотреть ned batchelder big o how code slows as data grows pycon 2018

  • CodeLink
  • 2025-01-24
  • 2
ned batchelder big o how code slows as data grows pycon 2018
Ned BatchelderBig O notationcode efficiencydata growthalgorithm complexityperformance analysisPyCon 2018software performancescalabilitytime complexityspace complexitycoding best practicesPython programmingdeveloper insights
  • ok logo

Скачать ned batchelder big o how code slows as data grows pycon 2018 бесплатно в качестве 4к (2к / 1080p)

У нас вы можете скачать бесплатно ned batchelder big o how code slows as data grows pycon 2018 или посмотреть видео с ютуба в максимальном доступном качестве.

Для скачивания выберите вариант из формы ниже:

  • Информация по загрузке:

Cкачать музыку ned batchelder big o how code slows as data grows pycon 2018 бесплатно в формате MP3:

Если иконки загрузки не отобразились, ПОЖАЛУЙСТА, НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если у вас возникли трудности с загрузкой, пожалуйста, свяжитесь с нами по контактам, указанным в нижней части страницы.
Спасибо за использование сервиса video2dn.com

Описание к видео ned batchelder big o how code slows as data grows pycon 2018

Download 1M+ code from https://codegive.com/3e403be
ned batchelder's talk on "big o: how code slows as data grows" at pycon 2018 focuses on understanding algorithmic complexity and how it affects the performance of code as the size of the input data increases. here's a summary of the key concepts from the talk, along with code examples to illustrate them.

understanding big o notation

big o notation is a mathematical representation that describes the upper limit of the time complexity of an algorithm as a function of the input size (n). it helps developers understand how the performance of an algorithm will change as the size of the input data grows.

common big o notations

1. **o(1) - constant time**: the execution time does not change regardless of the input size.


2. **o(n) - linear time**: the execution time grows linearly with the input size.


3. **o(n^2) - quadratic time**: the execution time grows quadratically as the input size increases, often seen in nested loops.


4. **o(log n) - logarithmic time**: the execution time grows logarithmically, often seen in algorithms that divide the problem in half each time (like binary search).


visualizing performance

to illustrate how these complexities affect performance, consider the following code that compares the execution time of different algorithms as the input size increases.



key takeaways

1. **choose algorithms wisely**: understanding big o notation helps in selecting the right algorithm for a specific problem, especially as the input size grows.
2. **performance bottlenecks**: as input data increases, algorithms with higher time complexities can become infeasible. identifying these can help avoid performance bottlenecks.
3. **big o is a simplification**: while big o provides a useful abstraction, real-world performance can also be affected by factors like constant factors, lower order terms, and hardware specifics.

conclusion

ned batchelder's talk at pycon 2018 emphasizes the importance of analyzing the scalability of code using b ...

#BigO #PyCon2018 #numpy
Ned Batchelder
Big O notation
code efficiency
data growth
algorithm complexity
performance analysis
PyCon 2018
software performance
scalability
time complexity
space complexity
coding best practices
optimization techniques
Python programming
developer insights

Комментарии

Информация по комментариям в разработке

Похожие видео

  • О нас
  • Контакты
  • Отказ от ответственности - Disclaimer
  • Условия использования сайта - TOS
  • Политика конфиденциальности

video2dn Copyright © 2023 - 2025

Контакты для правообладателей [email protected]