Logo video2dn
  • Сохранить видео с ютуба
  • Категории
    • Музыка
    • Кино и Анимация
    • Автомобили
    • Животные
    • Спорт
    • Путешествия
    • Игры
    • Люди и Блоги
    • Юмор
    • Развлечения
    • Новости и Политика
    • Howto и Стиль
    • Diy своими руками
    • Образование
    • Наука и Технологии
    • Некоммерческие Организации
  • О сайте

Скачать или смотреть Vectorization & Embedding

  • Study_Note
  • 2025-10-18
  • 0
Vectorization & Embedding
  • ok logo

Скачать Vectorization & Embedding бесплатно в качестве 4к (2к / 1080p)

У нас вы можете скачать бесплатно Vectorization & Embedding или посмотреть видео с ютуба в максимальном доступном качестве.

Для скачивания выберите вариант из формы ниже:

  • Информация по загрузке:

Cкачать музыку Vectorization & Embedding бесплатно в формате MP3:

Если иконки загрузки не отобразились, ПОЖАЛУЙСТА, НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если у вас возникли трудности с загрузкой, пожалуйста, свяжитесь с нами по контактам, указанным в нижней части страницы.
Спасибо за использование сервиса video2dn.com

Описание к видео Vectorization & Embedding

Vectorization & Embedding
※ Study IT for 5 minutes a day (Press More)
💡 Understanding Vectorization and Embedding Vectors — Made Simple

🧠 “How AI turns text into numbers — and numbers into meaning.”

🧩 1️⃣ What Is Vectorization?

👉 Vectorization is the process of converting text (words or sentences) into numbers.

Computers cannot understand letters or words directly —
they only understand mathematical operations.

So before an AI model like ChatGPT can understand a sentence,
it must first transform language into a numeric form.
That process is called vectorization.

🍎 Example:

Word Vectorized Form (One-Hot Encoding)
Apple [1, 0, 0, 0]
Pear [0, 1, 0, 0]
Grape [0, 0, 1, 0]
Car [0, 0, 0, 1]

This approach is known as One-Hot Encoding —
each word is represented by a 1 in a unique position, with 0s elsewhere.

🚫 Problem:
Even though “apple” and “pear” are both fruits,
the computer sees them as completely unrelated — their vectors are orthogonal.

🧠 2️⃣ Enter the Embedding Vector

👉 An Embedding Vector is a meaning-based numerical representation of a word.

Unlike one-hot encoding, which assigns arbitrary positions,
embeddings capture semantic relationships —
words used in similar contexts have similar vector values.

🔍 Comparison Example:

Word One-Hot Encoding Embedding Vector (Example)
Apple [1, 0, 0, 0] [0.12, 0.89, 0.31]
Pear [0, 1, 0, 0] [0.15, 0.80, 0.35]
Car [0, 0, 0, 1] [0.91, 0.12, 0.04]

Now, “apple” and “pear” are numerically close,
while “car” is far away in vector space. 🚗🍎

📏 Key idea:

“Words with similar meanings are closer in the embedding space.”

⚙️ 3️⃣ Vectorization vs Embedding — At a Glance
Category Vectorization Embedding Vector
Concept Converting text into numbers Representing meaning numerically
Method Rule-based (e.g., One-Hot, TF-IDF) Neural-network-based (learned)
Relationships No semantic relationships Captures similarity between words
Dimensions As many as the vocabulary size Typically 100–1000 dimensions
Example [1, 0, 0, 0] [0.12, 0.89, 0.31, …]

💬 In short:
Vectorization = simple transformation
Embedding = meaningful representation

🧩 4️⃣ How Embedding Vectors Are Created

1️⃣ Train on large amounts of text
Example sentences:

“I like apples.” / “Pears are delicious.”

2️⃣ Learn context relationships
If “apple” frequently appears near “fruit,” “sweet,” or “eat,”
the model learns that “apple” has a fruit-like meaning.

3️⃣ Generate semantic positions
→ “Apple” and “pear” end up close together.
→ “Car” stays far apart.

These learned coordinates become embedding vectors —
numerical points that represent meaning in space.

🤖 5️⃣ The Role of Embedding Vectors in LLMs

In models like ChatGPT, Claude, or Gemini,
the text passes through an embedding layer before any reasoning begins.

Example:

Input: "I love apples."
Tokenized: ["I", "love", "apples"]
Embedding Conversion:

"I" → [0.10, -0.30, 0.70, …]
"love" → [0.40, 0.90, -0.10, …]
"apples" → [0.80, 0.60, 0.20, …]


These vectors form the mathematical foundation
that allows the model to understand context and predict the next word.

🌐 In short:

Embedding is the first step that enables LLMs to “understand” language mathematically.

📚 6️⃣ Quick Summary
Term Definition
Vectorization Converting text into numbers
Embedding A form of vectorization that encodes meaning
Output Embedding Vector — coordinates representing word or sentence meaning
Role Enables LLMs to understand, reason, and generate human-like responses
💬 Final Thoughts

Vectorization is the gateway — turning words into numbers.
Embedding is the key — infusing those numbers with meaning.

AI models like ChatGPT can interpret context,
analyze intent, and respond intelligently
because embeddings give numbers the power of understanding. 🚀

Комментарии

Информация по комментариям в разработке

Похожие видео

  • О нас
  • Контакты
  • Отказ от ответственности - Disclaimer
  • Условия использования сайта - TOS
  • Политика конфиденциальности

video2dn Copyright © 2023 - 2025

Контакты для правообладателей [email protected]