Logo video2dn
  • Сохранить видео с ютуба
  • Категории
    • Музыка
    • Кино и Анимация
    • Автомобили
    • Животные
    • Спорт
    • Путешествия
    • Игры
    • Люди и Блоги
    • Юмор
    • Развлечения
    • Новости и Политика
    • Howto и Стиль
    • Diy своими руками
    • Образование
    • Наука и Технологии
    • Некоммерческие Организации
  • О сайте

Скачать или смотреть How to Remove Duplicates in a Pandas DataFrame Based on Related Values

  • vlogize
  • 2025-10-11
  • 0
How to Remove Duplicates in a Pandas DataFrame Based on Related Values
Remove all the rows having same column values of another column which is duplicatedpythonpandasdataframedictionary
  • ok logo

Скачать How to Remove Duplicates in a Pandas DataFrame Based on Related Values бесплатно в качестве 4к (2к / 1080p)

У нас вы можете скачать бесплатно How to Remove Duplicates in a Pandas DataFrame Based on Related Values или посмотреть видео с ютуба в максимальном доступном качестве.

Для скачивания выберите вариант из формы ниже:

  • Информация по загрузке:

Cкачать музыку How to Remove Duplicates in a Pandas DataFrame Based on Related Values бесплатно в формате MP3:

Если иконки загрузки не отобразились, ПОЖАЛУЙСТА, НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если у вас возникли трудности с загрузкой, пожалуйста, свяжитесь с нами по контактам, указанным в нижней части страницы.
Спасибо за использование сервиса video2dn.com

Описание к видео How to Remove Duplicates in a Pandas DataFrame Based on Related Values

Learn how to efficiently manage duplicates in a Pandas DataFrame based on related column values, ensuring cleaner data analysis.
---
This video is based on the question https://stackoverflow.com/q/68618725/ asked by the user 'Anubhav' ( https://stackoverflow.com/u/14368172/ ) and on the answer https://stackoverflow.com/a/68618837/ provided by the user 'Andreas' ( https://stackoverflow.com/u/11971785/ ) at 'Stack Overflow' website. Thanks to these great users and Stackexchange community for their contributions.

Visit these links for original content and any more details, such as alternate solutions, latest updates/developments on topic, comments, revision history etc. For example, the original title of the Question was: Remove all the rows having same column values of another column which is duplicated

Also, Content (except music) licensed under CC BY-SA https://meta.stackexchange.com/help/l...
The original Question post is licensed under the 'CC BY-SA 4.0' ( https://creativecommons.org/licenses/... ) license, and the original Answer post is licensed under the 'CC BY-SA 4.0' ( https://creativecommons.org/licenses/... ) license.

If anything seems off to you, please feel free to write me at vlogize [AT] gmail [DOT] com.
---
How to Remove Duplicates in a Pandas DataFrame Based on Related Values

Handling duplicate values in data is a common challenge in data analysis. In this guide, we will explore an effective method to remove all rows in a Pandas DataFrame that are related to duplicates in a specified column.

Understanding the Problem

Imagine you're working with the following DataFrame:

[[See Video to Reveal this Text or Code Snippet]]

In this example, the 'name' column contains duplicate values. Specifically, the value 'a' appears twice with different IDs (1 and 2). Our task is to remove the duplicate entries and also eliminate all rows corresponding to duplicates in the 'ID' column.

Desired Steps

Remove Duplicate 'name' Values: Retain the first occurrence of each duplicate 'name'.

Eliminate IDs Related to Deleted Rows: If a 'name' is removed, also remove all rows sharing the same 'ID'.

The expected output after these operations for the original DataFrame is:

[[See Video to Reveal this Text or Code Snippet]]

Solution Approach

To tackle this problem, we will follow a structured coding approach in Python using the Pandas library.

Step 1: Initial Setup

First, we need to set up our DataFrame as follows:

[[See Video to Reveal this Text or Code Snippet]]

Step 2: Remove Duplicate 'name' Values

We will use the duplicated() function to identify duplicated 'name' entries. The goal is to keep the first occurrence and filter out duplicates:

[[See Video to Reveal this Text or Code Snippet]]

At this point, your DataFrame will look like this:

[[See Video to Reveal this Text or Code Snippet]]

Step 3: Identify and Remove Related IDs

Next, we need to create a blacklist for the IDs associated with the removed name duplicates. This will help us filter out all records sharing those IDs:

[[See Video to Reveal this Text or Code Snippet]]

Final Output

After executing the code above, we achieve the desired output:

[[See Video to Reveal this Text or Code Snippet]]

Conclusion

Managing and cleaning duplicate data in a DataFrame is essential for accurate analysis. By following the steps outlined above, you can effectively remove duplicates linked to other fields in your data, ensuring a cleaner and more reliable dataset.

Don't forget to explore the powerful functionalities of Pandas to enhance your data manipulation skills even further!

Комментарии

Информация по комментариям в разработке

Похожие видео

  • О нас
  • Контакты
  • Отказ от ответственности - Disclaimer
  • Условия использования сайта - TOS
  • Политика конфиденциальности

video2dn Copyright © 2023 - 2025

Контакты для правообладателей [email protected]