Logo video2dn
  • Сохранить видео с ютуба
  • Категории
    • Музыка
    • Кино и Анимация
    • Автомобили
    • Животные
    • Спорт
    • Путешествия
    • Игры
    • Люди и Блоги
    • Юмор
    • Развлечения
    • Новости и Политика
    • Howto и Стиль
    • Diy своими руками
    • Образование
    • Наука и Технологии
    • Некоммерческие Организации
  • О сайте

Скачать или смотреть analysis of learning influence of training data selected by

  • CodeBeam
  • 2025-06-17
  • 2
analysis of learning influence of training data selected by
  • ok logo

Скачать analysis of learning influence of training data selected by бесплатно в качестве 4к (2к / 1080p)

У нас вы можете скачать бесплатно analysis of learning influence of training data selected by или посмотреть видео с ютуба в максимальном доступном качестве.

Для скачивания выберите вариант из формы ниже:

  • Информация по загрузке:

Cкачать музыку analysis of learning influence of training data selected by бесплатно в формате MP3:

Если иконки загрузки не отобразились, ПОЖАЛУЙСТА, НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если у вас возникли трудности с загрузкой, пожалуйста, свяжитесь с нами по контактам, указанным в нижней части страницы.
Спасибо за использование сервиса video2dn.com

Описание к видео analysis of learning influence of training data selected by

Get Free GPT4.1 from https://codegive.com/e1090c2
Analysis of Learning Influence of Training Data: A Detailed Tutorial

This tutorial explores how to analyze the influence of individual training data points on a machine learning model's performance. Understanding this influence is crucial for:

*Identifying influential examples:* Pinpointing data points that contribute significantly to the model's learning and generalization.
*Detecting noisy or mislabeled data:* Identifying data points that negatively impact model performance and might require correction or removal.
*Understanding model behavior:* Gaining insights into which data points drive specific predictions or decisions made by the model.
*Data cleaning and improvement:* Prioritizing data points for cleaning and labeling efforts based on their influence.
*Model debugging and refinement:* Using influential data to understand unexpected model behaviors and guide improvements.

We'll cover different techniques for assessing data influence, focusing on *Leave-One-Out (LOO) Influence Functions* and **Shapley Values**, and provide practical code examples using Python with libraries like `scikit-learn`, `numpy`, and `shap`.

*1. Fundamentals: What is Data Influence?*

Data influence refers to the degree to which a particular training data point affects the trained model and its subsequent predictions. A highly influential data point has a disproportionately large impact on the model's parameters and performance, while a less influential data point has a minimal effect.

*Why is it Important?*

*Robustness:* Models that are overly sensitive to a small number of data points are often less robust and may generalize poorly to new, unseen data.
*Fairness:* Understanding data influence can help identify and mitigate biases in the training data that disproportionately affect certain demographic groups.
*Explainability:* Data influence analysis contributes to making machine learning models more transparent and understandable, ...

#jwt #jwt #jwt

Комментарии

Информация по комментариям в разработке

Похожие видео

  • О нас
  • Контакты
  • Отказ от ответственности - Disclaimer
  • Условия использования сайта - TOS
  • Политика конфиденциальности

video2dn Copyright © 2023 - 2025

Контакты для правообладателей [email protected]