Logo video2dn
  • Сохранить видео с ютуба
  • Категории
    • Музыка
    • Кино и Анимация
    • Автомобили
    • Животные
    • Спорт
    • Путешествия
    • Игры
    • Люди и Блоги
    • Юмор
    • Развлечения
    • Новости и Политика
    • Howto и Стиль
    • Diy своими руками
    • Образование
    • Наука и Технологии
    • Некоммерческие Организации
  • О сайте

Скачать или смотреть GROTESQUE: Noisy Group Testing (Quick and Efficient)

  • Mayank Bakshi
  • 2013-05-29
  • 106
GROTESQUE: Noisy Group Testing (Quick and Efficient)
Group TestingNoisy Group TestingAlgorithmInformation Theory
  • ok logo

Скачать GROTESQUE: Noisy Group Testing (Quick and Efficient) бесплатно в качестве 4к (2к / 1080p)

У нас вы можете скачать бесплатно GROTESQUE: Noisy Group Testing (Quick and Efficient) или посмотреть видео с ютуба в максимальном доступном качестве.

Для скачивания выберите вариант из формы ниже:

  • Информация по загрузке:

Cкачать музыку GROTESQUE: Noisy Group Testing (Quick and Efficient) бесплатно в формате MP3:

Если иконки загрузки не отобразились, ПОЖАЛУЙСТА, НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если у вас возникли трудности с загрузкой, пожалуйста, свяжитесь с нами по контактам, указанным в нижней части страницы.
Спасибо за использование сервиса video2dn.com

Описание к видео GROTESQUE: Noisy Group Testing (Quick and Efficient)

Group-testing refers to the problem of identifying (with high probability) a (small) subset of D defectives from a (large) set of N items via a "small" number of "pooled" tests (i.e., tests that have a positive outcome if at least one of the items being tested in the pool is defective, else have a negative outcome). The tests may be noiseless or noisy, and the testing procedure may be adaptive (the pool defining a test may depend on the outcome of a previous test), or non-adaptive (each test is performed independent of the outcome of other tests). A rich body of literature demonstrates that \Theta(Dlog(N)) tests are information-theoretically necessary and sufficient for the group-testing problem, and provides algorithms that achieve this performance. However, it is only recently that reconstruction algorithms with computational complexity that is sub-linear in N have started being investigated (recent works gave some of the first such algorithms). In the scenario with adaptive tests with noisy outcomes, we present the first scheme that is simultaneously order-optimal (up to small constant factors) in both the number of tests and the decoding complexity (O(Dlog(N)) in both the performance metrics). The total number of stages of our adaptive algorithm is "small" (O(log(D))). Similarly, in the scenario with non- adaptive tests with noisy outcomes, we present the first scheme that is simultaneously near-optimal in both the number of tests and the decoding complexity (via an algorithm that requires O(Dlog(D)log(N)) tests and has a decoding complexity of O(D(log N + log2 D)). Finally, we present an adaptive algorithm that only requires 2 stages, and for which both the number of tests and the decoding complexity scale as O(D(log N +log2 D)).

Комментарии

Информация по комментариям в разработке

Похожие видео

  • О нас
  • Контакты
  • Отказ от ответственности - Disclaimer
  • Условия использования сайта - TOS
  • Политика конфиденциальности

video2dn Copyright © 2023 - 2025

Контакты для правообладателей [email protected]