Logo video2dn
  • Сохранить видео с ютуба
  • Категории
    • Музыка
    • Кино и Анимация
    • Автомобили
    • Животные
    • Спорт
    • Путешествия
    • Игры
    • Люди и Блоги
    • Юмор
    • Развлечения
    • Новости и Политика
    • Howto и Стиль
    • Diy своими руками
    • Образование
    • Наука и Технологии
    • Некоммерческие Организации
  • О сайте

Скачать или смотреть 03 Logistic Regression: Soft Updates for Better Learning

  • Vu Hung Nguyen (Hưng)
  • 2025-10-08
  • 1
03 Logistic Regression: Soft Updates for Better Learning
  • ok logo

Скачать 03 Logistic Regression: Soft Updates for Better Learning бесплатно в качестве 4к (2к / 1080p)

У нас вы можете скачать бесплатно 03 Logistic Regression: Soft Updates for Better Learning или посмотреть видео с ютуба в максимальном доступном качестве.

Для скачивания выберите вариант из формы ниже:

  • Информация по загрузке:

Cкачать музыку 03 Logistic Regression: Soft Updates for Better Learning бесплатно в формате MP3:

Если иконки загрузки не отобразились, ПОЖАЛУЙСТА, НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если у вас возникли трудности с загрузкой, пожалуйста, свяжитесь с нами по контактам, указанным в нижней части страницы.
Спасибо за использование сервиса video2dn.com

Описание к видео 03 Logistic Regression: Soft Updates for Better Learning

This episode introduces Logistic Regression (LR), a machine learning algorithm designed to address the limitations of the perceptron, particularly its reliance on discrete updates during training. LR offers a more elegant solution through continuous updates, improving learning efficiency and solution quality.

Main Concepts and Theories

The fundamental concept of LR is replacing the perceptron's discrete decision function with a continuous one: the logistic function. This function, also known as the sigmoid function, produces an S-shaped curve with outputs ranging monotonically from 0 to 1. LR's decision function directly models the conditional probability of a positive outcome given the input, along with the model's weights and bias. The training objective is to maximize the likelihood of the observed data, which is the product of individual conditional probabilities across all training examples. This is conventionally reformulated as minimizing a cost function, specifically the negative log likelihood. This cost function is always positive, reflects high error with large values, and approaches zero for perfect predictions. Gradient descent is the iterative optimization algorithm employed to find the specific model parameters (weights and bias) that minimize this cost function. It operates by repeatedly adjusting parameters in the direction opposite to the function's slope (derivative).

Key Methodologies and Approaches

LR's decision function is given by a specific formula that produces a value between 0 and 1. To train, one output label is mapped to 1 (e.g., positive review) and the other to 0 (e.g., negative review). The LR learning algorithm performs "soft" updates. For each training example with its correct label, the model calculates a prediction. The weights and bias are then updated by adding a quantity proportional to the learning rate multiplied by the error (the difference between the correct label and the prediction). This update mechanism ensures that adjustments are proportional to the model's current error, making larger corrections for bigger mistakes. In cases of perfect prediction or complete misprediction, these updates reduce to those of the perceptron. For practical classification after training, a threshold (commonly 0.5) is applied to the continuous LR output to convert it into a discrete class prediction (e.g., if output is 0.5 or greater, classify as positive). The derivation of the cost function assumes that training examples are independent.

Important Insights and Findings

The introduction of a continuous decision function and "soft" updates is a significant improvement over the perceptron, leading to more stable and efficient learning. By interpreting its output as a conditional probability, LR provides a measure of confidence in its predictions. The formulation of learning as minimizing the negative log likelihood is a foundational concept, widely used in machine learning for optimizing probabilistic models. Gradient descent is presented as a powerful and general optimization strategy applicable to a wide range of functions, not just LR's cost function.

Practical Applications

Logistic Regression is primarily used for binary classification tasks. Examples include classifying customer reviews as positive or negative, spam detection, or predicting whether an email is urgent. It can predict the probability of an event occurring, which can then be used for decision-making based on a defined threshold.

Technical Details and Frameworks

The logistic function is a type of sigmoid function. The learning algorithm's update rule incorporates a learning rate to control the step size. The likelihood of the data is defined as the product of individual conditional probabilities for each example. The negative log likelihood cost function is explicitly given as a sum of terms involving the actual label and the predicted probability for each example.

Комментарии

Информация по комментариям в разработке

Похожие видео

  • О нас
  • Контакты
  • Отказ от ответственности - Disclaimer
  • Условия использования сайта - TOS
  • Политика конфиденциальности

video2dn Copyright © 2023 - 2025

Контакты для правообладателей [email protected]