Logo video2dn
  • Сохранить видео с ютуба
  • Категории
    • Музыка
    • Кино и Анимация
    • Автомобили
    • Животные
    • Спорт
    • Путешествия
    • Игры
    • Люди и Блоги
    • Юмор
    • Развлечения
    • Новости и Политика
    • Howto и Стиль
    • Diy своими руками
    • Образование
    • Наука и Технологии
    • Некоммерческие Организации
  • О сайте

Скачать или смотреть Difficulties with Dedekind cuts | Real numbers and limits Math Foundations 116 | N J Wildberger

  • Insights into Mathematics
  • 2014-11-30
  • 46927
Difficulties with Dedekind cuts | Real numbers and limits Math Foundations 116 | N J Wildberger
Dedekind cutsreal numbersfoundations of mathematicsanalysisWildbergerCauchy sequencesStern Brocot treedifficulties with real numbersMathematics (Field Of Study)Richard Dedekind (Academic)
  • ok logo

Скачать Difficulties with Dedekind cuts | Real numbers and limits Math Foundations 116 | N J Wildberger бесплатно в качестве 4к (2к / 1080p)

У нас вы можете скачать бесплатно Difficulties with Dedekind cuts | Real numbers and limits Math Foundations 116 | N J Wildberger или посмотреть видео с ютуба в максимальном доступном качестве.

Для скачивания выберите вариант из формы ниже:

  • Информация по загрузке:

Cкачать музыку Difficulties with Dedekind cuts | Real numbers and limits Math Foundations 116 | N J Wildberger бесплатно в формате MP3:

Если иконки загрузки не отобразились, ПОЖАЛУЙСТА, НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если у вас возникли трудности с загрузкой, пожалуйста, свяжитесь с нами по контактам, указанным в нижней части страницы.
Спасибо за использование сервиса video2dn.com

Описание к видео Difficulties with Dedekind cuts | Real numbers and limits Math Foundations 116 | N J Wildberger

Richard Dedekind around 1870 introduced a new way of thinking about what a real number `was'. By analyzing the case of sqrt(2), he concluded that we could associated to a real number a partition of the rational numbers into two subsets A and B, where all the elements of A were less than all the elements of B, and where A had no greatest element. Such partitions are now called Dedekind cuts, and purport to give a logical and substantial foundation for the theory of real numbers.

Does this actually work? Can we really create an arithmetic of real numbers this way? No and no. It does not really work. In this video we raise the difficult issues that believers like to avoid.

Video Content:
00:00 Intro to Dedekind's approach to "real numbers"
5:08 "Cuts" of the rationals
7:13 Principles of Mathematical Analysis
12:38 Subsets of Q
24:02 Prior theory of 'infinite sets'
32:09 Arithmetic with 'Dedekind cuts'
35:05 Unwieldy, infinite sets

************************
Screenshot PDFs for my videos are available at the website http://wildegg.com. These give you a concise overview of the contents of the lectures for various Playlists: great for review, study and summary.

My research papers can be found at my Research Gate page, at https://www.researchgate.net/profile/...

My blog is at http://njwildberger.com/, where I will discuss lots of foundational issues, along with other things.

Online courses will be developed at openlearning.com. The first one, already underway is Algebraic Calculus One at https://www.openlearning.com/courses/... Please join us for an exciting new approach to one of mathematics' most important subjects!

If you would like to support these new initiatives for mathematics education and research, please consider becoming a Patron of this Channel at   / njwildberger   Your support would be much appreciated.

Here are the Insights into Mathematics Playlists:

   • Плейлист  
   • Плейлист  
   • Плейлист  
   • Плейлист  
   • Плейлист  
   • Плейлист  
   • Плейлист  
   • Плейлист  
   • Плейлист  
   • Плейлист  
   • Плейлист  
   • Плейлист  
   • Плейлист  
   • Плейлист  
   • Плейлист  
   • Плейлист  
   • Плейлист  
   • Плейлист  
   • Плейлист  
   • Плейлист  
   • Плейлист  

Комментарии

Информация по комментариям в разработке

Похожие видео

  • О нас
  • Контакты
  • Отказ от ответственности - Disclaimer
  • Условия использования сайта - TOS
  • Политика конфиденциальности

video2dn Copyright © 2023 - 2025

Контакты для правообладателей [email protected]