Logo video2dn
  • Сохранить видео с ютуба
  • Категории
    • Музыка
    • Кино и Анимация
    • Автомобили
    • Животные
    • Спорт
    • Путешествия
    • Игры
    • Люди и Блоги
    • Юмор
    • Развлечения
    • Новости и Политика
    • Howto и Стиль
    • Diy своими руками
    • Образование
    • Наука и Технологии
    • Некоммерческие Организации
  • О сайте

Скачать или смотреть Meng Fang | Large Language Models Are Neurosymbolic Reasoners

  • London Machine Learning Meetup
  • 2024-04-16
  • 485
Meng Fang | Large Language Models Are Neurosymbolic Reasoners
  • ok logo

Скачать Meng Fang | Large Language Models Are Neurosymbolic Reasoners бесплатно в качестве 4к (2к / 1080p)

У нас вы можете скачать бесплатно Meng Fang | Large Language Models Are Neurosymbolic Reasoners или посмотреть видео с ютуба в максимальном доступном качестве.

Для скачивания выберите вариант из формы ниже:

  • Информация по загрузке:

Cкачать музыку Meng Fang | Large Language Models Are Neurosymbolic Reasoners бесплатно в формате MP3:

Если иконки загрузки не отобразились, ПОЖАЛУЙСТА, НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если у вас возникли трудности с загрузкой, пожалуйста, свяжитесь с нами по контактам, указанным в нижней части страницы.
Спасибо за использование сервиса video2dn.com

Описание к видео Meng Fang | Large Language Models Are Neurosymbolic Reasoners

Organised by Evolution AI - AI extraction from financial documents - https://www.evolution.ai/
Sponsored by Man Group - https://www.man.com/
Abstract: A wide range of real-world applications is characterized by their symbolic nature, necessitating a strong capability for symbolic reasoning. This paper investigates the potential application of Large Language Models (LLMs) as symbolic reasoners. We focus on text-based games, significant benchmarks for agents with natural language capabilities, particularly in symbolic tasks like math, map reading, sorting, and applying common sense in text-based worlds. To facilitate these agents, we propose an LLM agent designed to tackle symbolic challenges and achieve in-game objectives. We begin by initializing the LLM agent and informing it of its role. The agent then receives observations and a set of valid actions from the text-based games, along with a specific symbolic module. With these inputs, the LLM agent chooses an action and interacts with the game environments. Our experimental results demonstrate that our method significantly enhances the capability of LLMs as automated agents for symbolic reasoning, and our LLM agent is effective in text-based games involving symbolic tasks, achieving an average performance of 88% across all tasks.
Speaker bio: Meng Fang is an Assistant Professor in AI at the University of Liverpool. He is also a visiting professor at Eindhoven University of Technology. His research goal is to build human-like agents that can perform language understanding, reasoning and decision-making. His primary areas include natural language processing (NLP) and reinforcement learning/machine learning (RL/ML). He has published approximately 50 papers in the field of AI and NLP (NeurIPS, ACL, ICLR, etc). Moreover, he has received several paper awards, including the Best Paper Award at the Learning on Graphs (LoG 2022) conference.

Комментарии

Информация по комментариям в разработке

Похожие видео

  • О нас
  • Контакты
  • Отказ от ответственности - Disclaimer
  • Условия использования сайта - TOS
  • Политика конфиденциальности

video2dn Copyright © 2023 - 2025

Контакты для правообладателей [email protected]