Logo video2dn
  • Сохранить видео с ютуба
  • Категории
    • Музыка
    • Кино и Анимация
    • Автомобили
    • Животные
    • Спорт
    • Путешествия
    • Игры
    • Люди и Блоги
    • Юмор
    • Развлечения
    • Новости и Политика
    • Howto и Стиль
    • Diy своими руками
    • Образование
    • Наука и Технологии
    • Некоммерческие Организации
  • О сайте

Скачать или смотреть How to Refine a CoreML Image Classifier Model Using Object Detection Techniques

  • vlogize
  • 2025-09-21
  • 1
How to Refine a CoreML Image Classifier Model Using Object Detection Techniques
How to refine a CoreML image classifier model with an object detection model?iosmachine learningcoremlcreateml
  • ok logo

Скачать How to Refine a CoreML Image Classifier Model Using Object Detection Techniques бесплатно в качестве 4к (2к / 1080p)

У нас вы можете скачать бесплатно How to Refine a CoreML Image Classifier Model Using Object Detection Techniques или посмотреть видео с ютуба в максимальном доступном качестве.

Для скачивания выберите вариант из формы ниже:

  • Информация по загрузке:

Cкачать музыку How to Refine a CoreML Image Classifier Model Using Object Detection Techniques бесплатно в формате MP3:

Если иконки загрузки не отобразились, ПОЖАЛУЙСТА, НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если у вас возникли трудности с загрузкой, пожалуйста, свяжитесь с нами по контактам, указанным в нижней части страницы.
Спасибо за использование сервиса video2dn.com

Описание к видео How to Refine a CoreML Image Classifier Model Using Object Detection Techniques

Discover effective strategies for enhancing your `CoreML` image classifier models through `object detection`, even with limited data.
---
This video is based on the question https://stackoverflow.com/q/62761142/ asked by the user 'Manuel' ( https://stackoverflow.com/u/1870795/ ) and on the answer https://stackoverflow.com/a/62762348/ provided by the user 'Matthijs Hollemans' ( https://stackoverflow.com/u/7501629/ ) at 'Stack Overflow' website. Thanks to these great users and Stackexchange community for their contributions.

Visit these links for original content and any more details, such as alternate solutions, latest updates/developments on topic, comments, revision history etc. For example, the original title of the Question was: How to refine a CoreML image classifier model with an object detection model?

Also, Content (except music) licensed under CC BY-SA https://meta.stackexchange.com/help/l...
The original Question post is licensed under the 'CC BY-SA 4.0' ( https://creativecommons.org/licenses/... ) license, and the original Answer post is licensed under the 'CC BY-SA 4.0' ( https://creativecommons.org/licenses/... ) license.

If anything seems off to you, please feel free to write me at vlogize [AT] gmail [DOT] com.
---
How to Refine a CoreML Image Classifier Model Using Object Detection Techniques

In the realm of machine learning, particularly within the sphere of computer vision, classifying images effectively can often present challenges, especially when dealing with overlapping classes or prioritizing certain labels over others. If you've created an image classifier model using CreateML and find yourself struggling with suboptimal results due to your current data labeling, you're not alone. This guide explores a solution that leverages existing data to enhance your classifier using an object detection model.

Understanding the Problem

You may have a sizable dataset of hundreds of thousands of carefully classified images, where each image contains one or more objects with defined labels. However, the way the labels are prioritized can lead to confusion and inefficiencies in the classification process. For instance:

Label a is assigned when Object A is present.

Label b is meant for Object B.

Label c is used when Object C appears.

Overlapping scenarios lead to singular labels when multiple objects exist, creating classification challenges.

This prioritization of objects means that if Object A and Object B are present, the model will only recognize Object A due to its higher priority. This is where the approach of utilizing an object detection model becomes particularly valuable.

The Proposed Solution: Multi-label Classification

Despite the issues of labeling, we can employ a strategy called multi-label classification where the model predicts probabilities for each object independently. A few key points include:

Independent Labeling: Multi-label classification allows the model to assess and predict the likelihood of the presence of Objects A, B, and C independently, providing a more nuanced understanding of the image composition.

Capabilities of CoreML: Unfortunately, it is essential to note that CreateML does not currently support the training of multi-label classification models directly, which poses a challenge.

Leveraging Existing Data

Given the constraints and concerns regarding building a new dataset for an object detection model from scratch, the question arises: Can we utilize our existing data effectively? Here are a few strategies to consider:

1. Integrate Object Detection with Your Current Set

Even with a smaller object detection dataset, you can:

Select Key Images: Identify and select key images from your existing dataset that align well with the specific objects you want to detect.

Train an Object Detection Model: Using these key images, train your object detection model separately, focusing specifically on the images that demonstrate clear examples of each object.

2. Augmentation Strategies

Data Augmentation: To enhance your smaller object detection dataset, consider applying data augmentation techniques such as flipping, rotation, and scaling to artificially increase the diversity of your dataset.

Transfer Learning: Employ models pretrained on similar tasks and fine-tune them using your specific dataset, which will often yield better results than training from scratch.

3. Use Probabilities to Guide Decisions

Instead of an all-or-nothing classification, use the probabilities generated from your object detection model to inform the classification process:

Threshold Settings: Set thresholds that indicate the presence of an object, allowing for a more nuanced classification based on probability outputs.

Conclusion: A Dual Approach

In summary, while it may seem daunting to refine a CoreML image classifier model when existing labeling complicates direct classification, employing the strategy of multi-label classification and integrating object

Комментарии

Информация по комментариям в разработке

Похожие видео

  • О нас
  • Контакты
  • Отказ от ответственности - Disclaimer
  • Условия использования сайта - TOS
  • Политика конфиденциальности

video2dn Copyright © 2023 - 2025

Контакты для правообладателей [email protected]