Logo video2dn
  • Сохранить видео с ютуба
  • Категории
    • Музыка
    • Кино и Анимация
    • Автомобили
    • Животные
    • Спорт
    • Путешествия
    • Игры
    • Люди и Блоги
    • Юмор
    • Развлечения
    • Новости и Политика
    • Howto и Стиль
    • Diy своими руками
    • Образование
    • Наука и Технологии
    • Некоммерческие Организации
  • О сайте

Скачать или смотреть Confidence-Aware Classifier Guidance for Diffusion Policies | Abigail DeFranco

  • Explore Robotics: Education, Research, & Careers
  • 2024-08-14
  • 171
Confidence-Aware Classifier Guidance for Diffusion Policies | Abigail DeFranco
Robotics Institute Summer ScholarsCarnegie Mellon UniversityRobotics InternshipScholarshipsStudent ResearchCMUFunded ResearchSummer ProgramSummer ResearchResearchStudent ExperienceCollege StudentsCollegeconfidence-awareClassifierDiffusionPoliciesDiffusion PoliciesClassifier Guidance
  • ok logo

Скачать Confidence-Aware Classifier Guidance for Diffusion Policies | Abigail DeFranco бесплатно в качестве 4к (2к / 1080p)

У нас вы можете скачать бесплатно Confidence-Aware Classifier Guidance for Diffusion Policies | Abigail DeFranco или посмотреть видео с ютуба в максимальном доступном качестве.

Для скачивания выберите вариант из формы ниже:

  • Информация по загрузке:

Cкачать музыку Confidence-Aware Classifier Guidance for Diffusion Policies | Abigail DeFranco бесплатно в формате MP3:

Если иконки загрузки не отобразились, ПОЖАЛУЙСТА, НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если у вас возникли трудности с загрузкой, пожалуйста, свяжитесь с нами по контактам, указанным в нижней части страницы.
Спасибо за использование сервиса video2dn.com

Описание к видео Confidence-Aware Classifier Guidance for Diffusion Policies | Abigail DeFranco

Confidence-Aware Classifier Guidance for Diffusion Policies
Abigail DeFranco, RISS 2024 Cohort
Carnegie Mellon University
Robotics Institute Summer Scholars: https://riss.ri.cmu.edu/

State-of-the-art behavior cloning methods, such as Diffusion Policy, leverage powerful generative models to learn multi-modal action distributions, offering flexible policy conditioning and composition capabilities. At scale, diffusion policies are often trained on data from a heterogeneous collection of users. While diffusion models are flexible enough to fit these data, it then becomes difficult to perform controllable generation, especially when we want to match the preferences of a particular end user, rather than the entire training population. To address this, we propose a novel approach that utilizes diffusion policies conditioned on learned latent contexts that capture preferences underlying each demonstrator’s data. By introducing implicit human feedback, such as additional demonstrations, we interactively train a classifier-based guide to infer the most relevant hidden context and guide the robot’s policy accordingly. We offer an alignment pipeline leveraging calibration techniques to enable the robot to align its behavior with new users and adapt based on minimal feedback, ultimately facilitating more adaptable and personalized learning.

*****

The Robotics Institute Summer Scholars (RISS) Program at Carnegie Mellon University's School of Computer Science

Carnegie Mellon University’s Robotics Institute is committed to opening doors and creating opportunities for future leaders in robotics. Carnegie Mellon University is home to the top-ranked School of Computer Science, the world’s first university robotics department, the world’s first Ph.D. in robotics, and the largest university-affiliated robotics research group. Launched in 2006, CMU’s Robotics Institute Summer Scholars (RISS) program (http://riss.ri.cmu.edu/)comprises a ten-week summer undergraduate research program that immerses a diverse cohort of scholars in cutting-edge robotics and extensive post-program mentoring. The program provides opportunities for students from across the country and the world to conduct research with leaders in the field. The program aspires to foster a diverse and inclusive working and learning environment where all students enjoy the educational benefits of diversity and are actively welcomed, included, and supported by the community. The quality and breadth of research, high level of institute and university engagement, and powerful professional development programming, graduate school application counseling, and alumni network create transformative experiences and remarkable post-program trajectories.

RESEARCH RESULTS:
Explore our research projects and results at:
Videos & Posters at https://riss.ri.cmu.edu/research_show...
Working Papers Journal at https://riss.ri.cmu.edu/research_show...



APPLY: Starting November 1st at https://riss.ri.cmu.edu/

SCHOLAR EXPERIENCE: Scholars contribute, communicate, & connect.
Contribute: Scholars contribute to robotics research projects through a guided research experience with multiple layers of mentorship.
Communicate: Scholars learn how to effectively communicate research ideas to various audiences (e.g., sponsors, academic audience, novice audiences) and in various formats (e.g., elevator pitches, short talks, research papers, and poster presentations).
Connect: Scholars forge long-lasting connections to Carnegie Mellon University researchers and partners.

PROFESSIONAL SKILLS DEVELOPMENT: The RISS communications workshop series includes workshops and one-on-one tutoring on writing research & technical papers, designing graphics, and presenting posters. Their impressive results are a reflection of the deep partnerships and commitment of partners’ teaching contributions.

Robotics Workshops & Talks: The technical professional development series exposes scholars to a wide range of robotics applications and projects through weekly robotics talks, visits to labs, and hands-on workshops.


COMMUNITY: We foster the creation of a supportive learning community through intentional messaging, welcoming events, and effective programming. Onboarding includes virtual orientation sessions and office hours, a cohort Slack group, on-site orientation, and weekly office hours. Programming is structured to engage students in deep interactions – from workshop teams to peer reviews for papers and posters. Projects require students to go beyond their current skill set and to learn from others. Over 75 individuals participate as mentors, presenters, or programming partners annually.

Комментарии

Информация по комментариям в разработке

Похожие видео

  • О нас
  • Контакты
  • Отказ от ответственности - Disclaimer
  • Условия использования сайта - TOS
  • Политика конфиденциальности

video2dn Copyright © 2023 - 2025

Контакты для правообладателей [email protected]